Skip to main content
Log in

Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, the effects of tool rotational and traverse speeds on the mechanical properties and the microstructure of the friction stir welded joints from Al 5086-H34 were studied. Insufficient heat generation and inadequate metal transportation at very low rotational speed and high turbulence in the plasticized metal at very high rotational speed emerged tunnel and worm hole defects into the weldment. It was discovered that as rotational and traverse speed increased, the average grain size of the weldment decreased due to more dynamic recrystallization and amplified stirring effect. An increase in the rotational speed increased the ultimate tensile strength and microhardness of the specimens. At the best welding condition, by employing the rotational and traverse speeds of 1250 rpm and 80 mm/min, respectively, 51 % enhancement in the elongation and 8 % increase in the microhardness of the welded samples were obtained. Moreover, the ultimate tensile strength of this welded joint reached to 85 % of the base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydın H, Bayram A, Uğuz A, Akay KS (2009) Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state. Mater Des 30:2211–2221

    Article  Google Scholar 

  2. Xu W, Liu J, Luan G, Dong C (2009) Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Mater Des 30:1886–1893

    Article  Google Scholar 

  3. Farahani M, Sattari-Far I, Akbari D, Alderliesten R (2012) Numerical and experimental investigations of effects of residual stresses on crack behavior in Aluminum 6082-T6. Proc Inst Mech Eng C J Mech Eng Sci 226:2178–2191

    Article  Google Scholar 

  4. Farahani M, Sattari-Far I (2011) Effects of residual stresses on crack-tip constraints. Scientia Iranica B 18(6):1267–1276

    Article  Google Scholar 

  5. Farahani M, Sattari-Far I, Akbari D, Alderliesten R (2013) Effect of residual stresses on crack behaviour in single edge bending specimens. Fatigue Fracture Eng Mat Struct 36:115–126

    Article  Google Scholar 

  6. Zargar S, Farahani M, Besharati M (2015) Numerical and experimental investigation on the effects of submerged arc welding sequence on the residual distortion of the fillet-welded plates. Proceedings of the Institution of Mechanical Engineers, Part B: J Eng Manufac

  7. Kumbhar NT, Sahoo SK, Samajdar I, Dey GK, Bhanumurthy K (2011) Microstructure and microtextural studies of friction stir welded aluminium alloy 5052. Mater Des 32:1657–1666

    Article  Google Scholar 

  8. Bagheri Hariri M, Gholami Shiri S, Yaghoubinezhad Y, Mohammadi Rahvard M (2013) The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy. Mater Des 50:620–634

    Article  Google Scholar 

  9. Yufeng S, Nan X, Yoshiaki M, Hidetoshi F (2012) Microstructure and mechanical properties of friction stir welded pure Cu plates. Trans JWRI 41:53–58

    Google Scholar 

  10. Shi L, Wu C, Liu H (2015) The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int J Mach Tools Manuf 91:1–11

    Article  Google Scholar 

  11. Wu H, Chen Y-C, Strong D, Prangnell P (2015) Stationary shoulder FSW for joining high strength aluminum alloys. J Mater Process Technol 221:187–196

    Article  Google Scholar 

  12. Mishra R, Ma Z (2005) Friction stir welding and processing. Mater Sci Eng 50:1–78

    Article  MATH  Google Scholar 

  13. Li W, Li J, Zhang Z, Gao D, Chao Y (2013) Metal flow during friction stir welding of 7075-T651 aluminum alloy. Exp Mech 53:1573–1582

    Article  Google Scholar 

  14. Shen Z, Chen Y, Haghshenas M, Nguyen T, Galloway J, Gerlich AP (2015) Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding. Mater Charact 104:1–9

    Article  Google Scholar 

  15. Yufeng S, Nan X, Yoshiaki M, Hidetoshi F (2012) Microstructure and mechanical properties of friction stir welded pure Cu plates. Trans JWRI 41:53–58

    Google Scholar 

  16. Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mater Process Technol 172:110–122

    Article  Google Scholar 

  17. Jamshidi Aval H, Serajzadeh S, Kokabi A (2012) Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061. Int J Adv Manuf Technol 61:149–160

    Article  Google Scholar 

  18. Cavaliere P (2013) Friction stir welding of Al alloys: analysis of processing parameters affecting mechanical behavior. Proc CIRP 11:139–144

    Article  Google Scholar 

  19. Dawood HI, Mohammed KS, Azmi R, UdayDawood MB (2015) The influence of the surface roughness on the microstructures and mechanical properties of 6061 aluminium alloy using friction stir welding. Surf Coat Technol 270:272–283

    Article  Google Scholar 

  20. Mironov S, Sato Y, Kokawa H (2009) Development of grain structure during friction stir welding of pure titanium. Acta Mater 57:4519–4528

    Article  Google Scholar 

  21. Fratini L, Micari F, Buffa G, Ruisi VF (2010) A new fixture for FSW processes of titanium alloys. CIRP Ann Manuf Technol 59(1):271–274

    Article  Google Scholar 

  22. Besharati Givi M, Asadi P (2014) Advances in friction-stir welding and processing, 1st Edition. Woodhead Publishing

  23. Malik V, Sanjeev NK, Hebbar HS, Kailas SV (2014) Investigations on the effect of various tool pin profiles in friction stir welding using finite element simulations. Proc Eng 97:1060–1068

    Article  Google Scholar 

  24. Venkata Rao C, Madhusudhan Reddy G, Srinivasa Rao K (2015) Influence of tool pin profile on microstructure and corrosion behaviour of AA2219 Al–Cu alloy friction stir weld nuggets. Defence Technology, In Press

  25. Suri A (2014) An improved FSW tool for joining commercial aluminum plates. Proc Mat Sci 6:1857–1864

    Article  Google Scholar 

  26. Amirafshar A, Pouraliakbar H (2015) Effect of tool pin design on the microstructural evolutions and tribological characteristics of friction stir processed structural steel. Measurement 68:111–116

    Article  Google Scholar 

  27. Arora A, Mehta M, De A, DebRoy T (2012) Load bearing capacity of tool pin during friction stir welding. Int J Adv Manuf Technol 61:911–920

    Article  Google Scholar 

  28. Bahrami M, Farahmand Nikoo M, Besharati Givi M (2015) Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Mater Sci Eng A 626:220–228

    Article  Google Scholar 

  29. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des 29(2):362–373

    Article  Google Scholar 

  30. Palanivel R, Koshy Mathews P (2011) The tensile behaviour of friction stir welded dissimilar aluminium alloys. Mat Technol 45:623–626

    Google Scholar 

  31. Bahrami M, Dehghani K, Besharati Givi M (2014) A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Mater Des 53:217–225

    Article  Google Scholar 

  32. Sun Y, Fujii H (2010) Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A 527:6879–6886

    Article  Google Scholar 

  33. Chen H, Yan K, Lin T, Chen S, Jiang C, Zhao Y (2006) The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Mater Sci Eng A 433:64–69

    Article  Google Scholar 

  34. Rajakumar S, Balasubramanian V (2012) Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des 40:17–35

    Article  Google Scholar 

  35. ASM Handbook, Alloy Phase Diagrams (1992) The Materials Information Company

  36. Lee W-B, Jung S-B (2004) The joint properties of copper by friction stir welding. Mater Lett 58(6):1041–1046

    Article  Google Scholar 

  37. Ma Z, Mishra R, Mahoney M (2002) Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater 50:4419–4430

    Article  Google Scholar 

  38. McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58:349–354

    Article  Google Scholar 

  39. Kasman Ş, Yenier Z (2013) Analyzing dissimilar friction stir welding of AA5754/AA7075. Int J Adv Manuf Technol 70:145–156

    Article  Google Scholar 

  40. Dolatkhah A, Golbabaei P, Besharati Givi MK, Molaiekiya F (2012) Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des 37:458–464

    Article  Google Scholar 

  41. Barmouz M, Besharati Givi MK, Seyfi J (2011) On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior. Mater Charact 62:108–117

    Article  Google Scholar 

  42. Yadav D, Bauri R (2012) Effect of friction stir processing on microstructure and mechanical properties of aluminium. Mater Sci Eng A 539:85–92

    Article  Google Scholar 

  43. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658

    Article  Google Scholar 

  44. Yadav D, Bauri R (2012) Effect of friction stir processing on microstructure and mechanical properties of aluminium. Mater Sci Eng A 539:85–92

    Article  Google Scholar 

  45. Barmouz M, Asadi P, Besharati Givi MK, Taherishargh M (2011) Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater Sci Eng A 528:1740–1749

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh Jamalian, H., Farahani, M., Besharati Givi, M.K. et al. Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints. Int J Adv Manuf Technol 83, 611–621 (2016). https://doi.org/10.1007/s00170-015-7581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7581-5

Keywords

Navigation