Skip to main content

Development of a novel bulk plastic deformation method: hydrostatic backward extrusion

Abstract

This paper aimed to propose a novel bulk plastic deformation method entitled hydrostatic backward extrusion process that is an implementation of the benefits of hydrostatic extrusion to the backward extrusion process. The applicability of the process was investigated using experimental tests and finite element analysis. The results showed that the produced tube by hydrostatic backward extrusion exhibits higher effective plastic strain while needing lower process load (elimination of friction force). The maximum process load in hydrostatic backward extrusion was obtained 55 kN that was 61.1 and 264.6 kN in the novel method of backward extrusion and conventional backward extrusion processes, respectively. This new method is promising for processing of high-strength ultrafine-grained tubes and hard-to-deform materials because of the nature of the processing by hydrostatic pressure.

This is a preview of subscription content, access via your institution.

References

  1. Wilson WR, Walowit J (1971) An isothermal hydrodynamic lubrication theory for hydrostatic extrusion and drawing processes with conical dies. J Tribol 93(1):69–74

    Google Scholar 

  2. Thiruvarudchelvan S, Alexander J (1971) Hydrodynamic lubrication in hydrostatic extrusion using a double reduction die. Int J Mach Tool Des Res 11(3):251–268

    Article  Google Scholar 

  3. Hung J-C, Hung C (2000) The design and development of a hydrostatic extrusion apparatus. J Mater Process Technol 104(3):226–235

    Article  Google Scholar 

  4. Wang F, Zhang Z, Li S (2001) Hydrodynamic analysis on process of hydrostatic extrusion for 93 tungsten alloy. Cailiao Kexue Yu Jishu. J Mater Sci Technol (China)(USA) 17:180–182

  5. Kopp R, Barton G (2003) Finite element modeling of hydrostatic extrusion of magnesium. J Technol Plast 28(1-2):1–12

    Google Scholar 

  6. Kulczyk M, Pachla W, Mazur A, Diduszko R, Garbacz H, Lewandowska M, Łojkowski W, Kurzydłowski K (2005) Microstructure and mechanical properties of nickel deformed by hydrostatic extrusion. Mater Sci Pol 23(3):839–846

    Google Scholar 

  7. Swiostek J, Göken J, Letzig D, Kainer K (2006) Forming of magnesium alloys at 100°C by hydrostatic extrusion. J Mater Eng Perform 15(6):705–711

    Article  Google Scholar 

  8. Swiostek J, Letzing D, Kainer K (2006) Hydrostatic extrusion at 100°C and its effect on the grain size and mechanical properties of magnesium alloys. Met Sci Heat Treat 48(11-12):499–503

    Article  Google Scholar 

  9. Lewandowska M, Kurzydlowski KJ (2008) Recent development in grain refinement by hydrostatic extrusion. J Mater Sci 43(23-24):7299–7306

    Article  Google Scholar 

  10. Chen D-C, You C-S (2009) Finite element simulation on high extrusion-ratio hydrostatic extrusion of porous material. In: Advanced Manufacturing Processes and Technologies Conference, p 11-20

  11. Li D, Liu Z, Yu Y, Wang E (2009) Numerical simulation of hot hydrostatic extrusion of W-40wt.% Cu. Mater Sci Eng A 499(1):118–122

    Google Scholar 

  12. Barišić B, Car Z, Ikonić M (2008) Analysis of different modeling approach at determining of backward extrusion force on AlCu5PbBi material. Metalurgija 47(4):313–316

    Google Scholar 

  13. Bae W, Yang D (1992) An upper-bound analysis of the backward extrusion of internally elliptic-shaped tubes from round billets. J Mater Process Technol 30(1):13–30

    Article  Google Scholar 

  14. Shen G, Vedhanayagam A, Kropp E, Altan T (1992) A method for evaluating friction using a backward extrusion-type forging. J Mater Process Technol 33(1):109–123

    Article  Google Scholar 

  15. Bae W, Yang D (1993) An analysis of backward extrusion of internally circular-shaped tubes from arbitrarily-shaped billets by the upper-bound method. J Mater Process Technol 36(2):175–185

    Article  Google Scholar 

  16. Lee J-H, Kim Y-H, Bae W-B (1997) An upper-bound elemental technique approach to the process design of asymmetric forgings. J Mater Process Technol 72(1):141–151

    Article  Google Scholar 

  17. Cho HY, Min GS, Jo CY, Kim MH (2003) Process design of the cold forging of a billet by forward and backward extrusion. J Mater Process Technol 135(2):375–381

    Article  Google Scholar 

  18. Bakhshi-Jooybari M, Saboori M, Hosseinipour S, Shakeri M, Gorji A (2006) Experimental and numerical study of optimum die profile in backward rod extrusion. J Mater Process Technol 177(1):596–599

    Article  Google Scholar 

  19. Uyyuru RK, Valberg H (2006) Physical and numerical analysis of the metal flow over the punch head in backward cup extrusion of aluminium. J Mater Process Technol 172(2):312–318

    Article  Google Scholar 

  20. Saboori M, Bakhshi-Jooybari M, Noorani-Azad M, Gorji A (2006) Experimental and numerical study of energy consumption in forward and backward rod extrusion. J Mater Process Technol 177(1):612–616

    Article  Google Scholar 

  21. Kim S, Chung S, Padmanaban S (2006) Investigation of lubrication effect on the backward extrusion of thin-walled rectangular aluminum case with large aspect ratio. J Mater Process Technol 180(1):185–192

    Article  Google Scholar 

  22. Abrinia K, Orangi S (2009) Investigation of process parameters for the backward extrusion of arbitrary-shaped tubes from round billets using finite element analysis. J Mater Eng Perform 18(9):1201–1208

    Article  Google Scholar 

  23. Orangi S, Abrinia K, Bihamta R (2011) Process parameter investigations of backward extrusion for various aluminum shaped section tubes using FEM analysis. J Mater Eng Perform 20(1):40–47

    Article  Google Scholar 

  24. Javanmard S, Daneshmand F, Moshksar M, Ebrahimi R (2011) Meshless analysis of backward extrusion by natural element method. Iran J Sci Technol Trans B Eng 35(M2):167–180

    Google Scholar 

  25. Alihosseini H, Asle Zaeem M, Dehghani K (2012) A cyclic forward–backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials. Mater Lett 68:204–208

    Article  Google Scholar 

  26. Shatermashhadi V, Manafi B, Abrinia K, Faraji G, Sanei M (2014) Development of a novel method for the backward extrusion. Mater Des 62:361–366

    Article  Google Scholar 

  27. Zhang Z, Wang F (2001) Numerical simulation on process of hydrostatic extrusion for tungsten alloy through concave dies with equal-strain contour lines. Cailiao Kexue Yu Jishu. J Mater Sci Technol (China)(USA) 17:17–19

  28. Peng X, Sumption M, Collings E (2003) Finite element modeling of hydrostatic extrusion for mono-core superconductor billets. Appl Supercond IEEE Trans 13(2):3434–3437

    Article  Google Scholar 

  29. Fereshteh-Saniee F, Pillinger I, Hartley P (2004) Friction modelling for the physical simulation of the bulk metal forming processes. J Mater Process Technol 153:151–156

    Article  Google Scholar 

  30. Yoon D-J, Lee S, Lim S-J, Kim E-Z (2010) Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures. J Mech Sci Technol 24(1):131–135

    Article  Google Scholar 

  31. Olejnik L, Kulczyk M, Pachla W, Rosochowski A (2009) Hydrostatic extrusion of UFG aluminium. Int J Mater Form 2(1):621–624

    Article  Google Scholar 

  32. Faraji G, Jafarzadeh H, Jeong H, Mashhadi M, Kim H (2012) Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy. Mater Des 35:251–258

  33. Faraji G, Mashhadi MM, Kim HS (2011) Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE). Mater Sci Eng A 528(13–14):4312–4317. doi:10.1016/j.msea.2011.02.075

    Article  Google Scholar 

  34. Faraji G, Mashhadi MM, Kim HS (2012) Microstructural evolution of UFG magnesium alloy produced by accumulative back extrusion (ABE). Mater Manuf Process 27(3):267–272

    Article  Google Scholar 

  35. Faraji G, Babaei A, Mashhadi MM, Abrinia K (2012) Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett 77:82–85

    Article  Google Scholar 

  36. Fatemi-Varzaneh S, Zarei-Hanzaki A (2009) Accumulative back extrusion (ABE) processing as a novel bulk deformation method. Mater Sci Eng A 504(1):104–106

    Article  Google Scholar 

  37. Faraji G, Jafarzadeh H, Jeong H, Mashhadi M, Kim H (2012) Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy. Mater Des 35:251–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manafi, B., Shatermashhadi, V., Abrinia, K. et al. Development of a novel bulk plastic deformation method: hydrostatic backward extrusion. Int J Adv Manuf Technol 82, 1823–1830 (2016). https://doi.org/10.1007/s00170-015-7517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7517-0

Keywords