Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP

  • Hao Li
  • Xuda QinEmail author
  • Gaiyun He
  • Yan Jin
  • Dan Sun
  • Mark Price


Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 𝜃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.


UD-CFRP Orthogonal cutting Fracture toughness Chip formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chibane H, Morandeau A, Serra R, Bouchou A, Leroy R (2013) Optimal milling conditions for carbon/epoxy composite material using damage and vibration analysis. Int J Adv Manuf Technol 68(5-8):1111–1121CrossRefGoogle Scholar
  2. 2.
    Silva D, Teixeira JP, Machado CM (2014) Methodology analysis for evaluation of drilling-induced damage in composites. Int J Adv Manuf Technol 71(9-12):1919–1928CrossRefGoogle Scholar
  3. 3.
    Qi Z, Zhang K, Cheng H, Wang D, Meng Q (2015) Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP. Int J Adv Manuf Technol:1–11Google Scholar
  4. 4.
    Arul S, Vijayaraghavan L, Malhotra S, Krishnamurthy R (2006) The effect of vibratory drilling on hole quality in polymeric composites. Int J Mach Tools Manuf 46 (3):252–259CrossRefGoogle Scholar
  5. 5.
    Davim JP, Reis P (2003) Drilling carbon fiber reinforced plastics manufactured by autoclavełexperimental and statistical study. Mater Design 24(5):315–324CrossRefGoogle Scholar
  6. 6.
    Soussia AB, Mkaddem A, El Mansori M (2014) Rigorous treatment of dry cutting of FRP-Interface consumption concept: a review. Int J Mech Sci 83:1–29CrossRefGoogle Scholar
  7. 7.
    Singh I, Bhatnagar N (2006) Drilling of uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates. Int J Adv Manuf Technol 27(9-10):870–876CrossRefGoogle Scholar
  8. 8.
    Arul S, Vijayaraghavan L, Malhotra S, Krishnamurthy R (2006) The effect of vibratory drilling on hole quality in polymeric composites. Int J Mach Tools Manuf 46(3):252–259CrossRefGoogle Scholar
  9. 9.
    Komanduri R (1997) Machining of fiber-reinforced composites. Mach Sci Technol 1(1):113–152CrossRefGoogle Scholar
  10. 10.
    Koplev A, Bunsell A (1980) Machining of fiber-reinforced composites. In: 3rd International Conference of Advances in Composite Materials, pp 1597–1605Google Scholar
  11. 11.
    Arola D, Ramulu M, Wang D (1996) Chip formation in orthogonal trimming of graphite/epoxy composite. Compos Part A-Appl S 1(1):113–152Google Scholar
  12. 12.
    Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of uni-directional glass fiber reinforced plastic (UD-GFRP) composites part 1: effect of geometrical and process parameters. Mach Sci Technol 9(4):481–501CrossRefGoogle Scholar
  13. 13.
    Zitoune R, Collombet F, Lachaud F, Piquet R, Pasquet P (2005) Experiment-calculation comparison of the cutting conditions representative of the long fiber composite drilling phase. Compos Sci Technol 65(3):455–466CrossRefGoogle Scholar
  14. 14.
    Zhou L, Hou N, Huang S, Xu L (2014) An experimental study on formation mechanisms of edge defects in orthogonal cutting of SiCp/Al composites. Int J Adv Manuf Technol 72(9-11):1407–1414CrossRefGoogle Scholar
  15. 15.
    Everstine G, Rogers T (1971) A theory of machining of fiber-reinforced materials. J Compos Mater 5 (1):94–106CrossRefGoogle Scholar
  16. 16.
    Bhatnagar N, Ramakrishnan N, Naik N, Komanduri R (1995) On the machining of fiber reinforced plastic (FRP) composite laminates. Int J Mach Tools Manuf 35(5):701–716CrossRefGoogle Scholar
  17. 17.
    Zhang L, Zhang H, Wang X (2001) A force prediction model for cutting unidirectional fibre-reinforced plastics. Mach Sci Technol 5(3):293–305CrossRefGoogle Scholar
  18. 18.
    Jahromi AS, Bahr B (2010) An analytical method for predicting cutting forces in orthogonal machining of unidirectional composites. Compos Sci Technol 70(16):2290–2297CrossRefGoogle Scholar
  19. 19.
    Ernst H, Merchant ME (1941) Chip formation, friction and finish. Cincinnati milling machine CompanyGoogle Scholar
  20. 20.
    Rahamathullah I, Shunmugam M (2014) Mechanistic approach for prediction of forces in micro-drilling of plain and glass reinforced epoxy sheets. Int J Adv Manuf Technol 75 (5-8):1177–1187CrossRefGoogle Scholar
  21. 21.
    Atkins A (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45(2):373–396CrossRefGoogle Scholar
  22. 22.
    Astakhov VP, Xiao X (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach Sci Technol 12(3):325–347CrossRefGoogle Scholar
  23. 23.
    Williams J, Patel Y, Blackman B (2010) A fracture mechanics analysis of cutting and machining. Eng Fract Mech 77 (2):293–308CrossRefGoogle Scholar
  24. 24.
    Wang X, Zhang L (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tools Manuf 43(10):1015–1022CrossRefGoogle Scholar
  25. 25.
    Rao GVG, Mahajan P, Bhatnagar N (2007) Machining of UD-GFRP composites chip formation mechanism. Compos Sci Technol 67(11):2271–2281Google Scholar
  26. 26.
    Ramulu M, Kim D, Choi G (2003) Frequency analysis and characterization in orthogonal cutting of glass fiber reinforced composites. Compos Part A-Appl S 34(10):949–962CrossRefGoogle Scholar
  27. 27.
    Patel Y, Blackman B, Williams J (2009) Determining fracture toughness from cutting tests on polymers. Eng Fract Mech 76(18):2711–2730CrossRefGoogle Scholar
  28. 28.
    Wang B, Liu Z, Yang Q (2013) Investigations of yield stress, fracture toughness, and energy distribution in high speed orthogonal cutting. Int J Mach Tools Manuf 73:1–8CrossRefGoogle Scholar
  29. 29.
    Shet C, Chandra N (2002) Analysis of energy balance when using cohesive zone models to simulate fracture processes. J Eng Mater Technol 124(4):440–450CrossRefGoogle Scholar
  30. 30.
    Rao GVG, Mahajan P, Bhatnagar N (2007) Micro-mechanical modeling of machining of FRP composites-Cutting force analysis. Compos Sci Technol 67(3-4):579–593CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Hao Li
    • 1
  • Xuda Qin
    • 1
    Email author
  • Gaiyun He
    • 1
  • Yan Jin
    • 2
  • Dan Sun
    • 2
  • Mark Price
    • 2
  1. 1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of EducationTianjin UniversityTianjinChina
  2. 2.School of Mechanical and Aerospace EngineeringQueen University BelfastBelfastUK

Personalised recommendations