Skip to main content
Log in

Study on cone roller bearing surface roughness improvement and the effect of surface roughness on tapered roller bearing service life

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The paper deals with the impact of internal geometry and micro-geometry of functional surfaces of the cone roller bearing on internal resistance—friction of roller bearings. It describes an ideal point of contact at intersection of cone axes and raceway values, as well as the necessary values of micro-geometry, which enable the use of the bearings under the most demanding installations in the automotive industry—in differential gears, or for installation of pinions of differential gears and cog wheels in gearboxes. It describes optimisation (modification) of production of supporting face of the inner ring of the bearing, the purpose of which is to ensure this perfect point of contact, as well as required values of micro-geometry of functional surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan B (2000) Modern tribology handbook, two volume Set. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Della Corte C, Stanford MK, Jett TR (2015) Rolling contact fatigue of superelastic intermetallic materials (SIM) for Use as resilient corrosion resistant bearings. Tribol Lett 57:1–10. doi:10.1007/s11249-014-0456-3

    Article  Google Scholar 

  3. Basera PK, Jain KV (2013) Reducing downtime of repairing for taper roller bearing by magnetic abrasive finishing (MAF) process. Diamond 4:130–136. doi:10.7763/IJIMT.2013.V4.375

    Google Scholar 

  4. Paulson NR, Evans NE, Bomidi JAR, Sadeghi F, Evans RD, Mistry KK (2015) A finite element model for rolling contact fatigue of refurbished bearings. Tribol Int 85:1–9. doi:10.1016/j.triboint.2014.12.006

    Article  Google Scholar 

  5. Huang HH, BenWang HP (1996) An integrated monitoring and diagnostic system for roller bearings. Int J Adv Manuf Technol 12:37–46. doi:10.1007/BF01178960

    Article  Google Scholar 

  6. Li CJ, Wu SM (1989) On-line detection of localized defects in bearings by pattern recognition analysis. J Eng Ind 111:331–336. doi:10.1115/1.3188768

    Article  Google Scholar 

  7. Kurfess TR, Billington S, Liang SY (2006) Advanced diagnostic and prognostic techniques for rolling element bearings. In: Wang L, Gao XR (eds) Condition monitoring and control for intelligent manufacturing, 1st edn. Springer-Verlag, London, pp 137–165

    Chapter  Google Scholar 

  8. Wei J, Zhang G (2010) A precision grinding method for screw rotors using CBN grinding wheel. Int J Adv Manuf Technol 48:495–503

    Article  Google Scholar 

  9. J Šiška, J Hulka (1996) Assembly, disassembly and failures of roller bearings, Management Art-Vladimír Petrák, Žilina

  10. ZVL AUTO spol. s r.o. Prešov: Internal documentation

  11. Wang P, Wong PL, Zhang Z (1996) Partial EHL analysis of rib-roller end contact in tapered roller bearings. Tribol Int 29:313–321. doi:10.1016/0301-679X(95)00059-D

    Article  Google Scholar 

  12. Hoeprich MR (1992) Rolling element bearing fatigue damage propagation. J Tribol 114:328–333. doi:10.1115/1.2920891

    Article  Google Scholar 

  13. Kotzalas MN, Harris TA (2000) Fatigue failure and ball bearing friction. Tribol Trans 43:137–143. doi:10.1080/10402000008982323

    Article  Google Scholar 

  14. Grohmann O, Rentsch R, Heinzel C, Brinksmeier E (2012) Numerical distortion simulation of roller bearing rings. Mater Werks 43:158–162. doi:10.1002/mawe.201100904

    Article  Google Scholar 

  15. Ioannides E, Harris TA (1985) A new fatigue life model for rolling bearings. J Tribol 107:377–378. doi:10.1115/1.3261082

    Article  Google Scholar 

  16. Panda A, Duplák J, Jurko J, Behún M (2011) Comprehensive identification of sintered carbide durability in machining process of bearings steel 100CrMn6. Adv Mater Res 340:30

    Article  Google Scholar 

  17. Panda A, Duplák J, Jurko J, Zajac J (2013) Turning bearing rings and determination of selected cutting materials durability. Adv Sci Lett 19:2486

    Article  Google Scholar 

  18. Panda A, Duplák J, Jurko J, Behun M (2013) New experimental expression of durability dependence for ceramic cutting tool. Appl Mech Mater 275–277:2230

    Article  Google Scholar 

  19. Panda A, Jurko J, Gajdoš M (2009) Accompanying phenomena in the cutting zone machinability during turning of stainless steels. Int J Mach Mach Mater 5:383

    Google Scholar 

  20. Panda A, Blecharz P, Pandová I (2013) Production of vehicles from development to the serial production, Technická univerzita v Košiciach, Fakulta výrobných technológií so sídlom v Prešove, Košice

  21. Perez M, Sidoroff CH, Vincent A, Esnouf C (2009) Acta Mater 57:3170

    Article  Google Scholar 

  22. Panda A, Jurko J, Džupon M, Pandová I (2011) Optimalization of heat treatment bearings rings with goal to eliminate deformation of material. Chem Sheets 105:459

    Google Scholar 

  23. Chen ZZ, Xu JH, Ding WF, Ma CY, Fu YC (2015) Grinding temperature during high-efficiency grinding Inconel 718 using porous CBN wheel with multilayer defined grain distribution. Int J Adv Manuf Technol 77:165–172

    Article  Google Scholar 

  24. Ding K, Fu Y, Su H, Gong Y, Wu K (2014) Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide. Int J Adv Manuf Technol 71:1929–1938

    Article  Google Scholar 

  25. Wang JM, Ye RZ, Tang YP, Bin HZ, Li ZB (2010) Research on the technology for outer race elliptical groove grinding with basin-like grinding wheel. Int J Adv Manuf Technol 49:497–504

    Article  MATH  Google Scholar 

  26. Niźankowski C (2010) Influence of the abradant’s composition on the selected physical properties in the process of front grinding of surfaces with microcrystalline sintered corundum grinding wheels. Int J Adv Manuf Technol 69:499–507

    Article  Google Scholar 

  27. Denkena B, Grove T, Gottsching T, de Silva EJ, Coelho RT, Filleti R (2015) Enhanced grinding performance by means of patterned grinding wheels. Int J Adv Manuf Technol 77:1935–1941

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Jurko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurko, J., Panda, A., Valíček, J. et al. Study on cone roller bearing surface roughness improvement and the effect of surface roughness on tapered roller bearing service life. Int J Adv Manuf Technol 82, 1099–1106 (2016). https://doi.org/10.1007/s00170-015-7449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7449-8

Keywords

Navigation