Advertisement

A new chain-processing-based computer vision system for automatic checking of machining set-up application for machine tools safety

  • Bilal Karabagli
  • Thierry Simon
  • Jean-José Orteu
ORIGINAL ARTICLE

Abstract

In high-speed machining, it is of key importance to avoid any collision between the machine tool and the machining set-up. If the machining set-up has not been assembled correctly by the operator and does not conform to the 3D CAD model used to compute the 3D trajectory sent to the machining unit, such collisions may occur. This paper presents a new chain-processing-based computer vision system to automatically avoid collision between tool and machining set-up components by checking that the actual machining set-up is in conformity with the desired 3D CAD model used to generate the tool trajectory. This computer vision system utilizes a single camera to automatically check conformity before the start of the machining operation. The proposed solution was tested in different kinds of machining set-ups, and each step of the proposed chain was evaluated. The results show the robustness of the solution for different kinds of machining set-ups.

Keywords

Machine tool safety Machining set-up Computer-vision-based inspection Automatic checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad R, Tichadou S, Hascoët J-Y Integration of vision based image processing for multi-axis CNC machine tool safe and efficient trajectory generation. International Journal of Machine Engineering 10(4)Google Scholar
  2. 2.
    Zhang X, Tsang W-M, Kazuo Y, Masahiko M (2013) A study on automatic on-machine inspection system for 3D modeling and measurement of cutting tools. J Intell Manuf 24(1):71–86Google Scholar
  3. 3.
    Zhang X, Tian X, Kazuo Y (2009) On-machine 3D vision system for machining setup modeling. Int J Adv Manuf Technol 48(1–4):251–265Google Scholar
  4. 4.
    Zhang X, Tian X, Kazuo Y, Makoto F (2007) 3D reconstruction and pose determination of the cutting tool from a single view. In: ISVC (2)’07, pp 377–386Google Scholar
  5. 5.
    Rafael Grompone VG, Jeremie J, Jean-Michel M, Gregory R (2010) LSD: a fast line segment detector with a false detection control. IEEE Trans Pattern Anal Mach Intell 32:722–732CrossRefGoogle Scholar
  6. 6.
    Burns J, Hanson A, Riseman E (1986) Extracting straight lines. IEEE Trans Pattern Anal Mach Intell 8(4):425–455CrossRefGoogle Scholar
  7. 7.
    Deschenes F, Ziou D, Auclair-Fortier M-F (2004) Detection of lines, line junctions and line terminations. Int J Remote Sens 25(3):511–535CrossRefGoogle Scholar
  8. 8.
    Grompone von Gioi R, Jakubowicz J, Morel J-M, Randall G (2010) LSD: a fast line segment detector with a false detection control. IEEE Trans Pattern Anal Mach Intell 32(4):722–732CrossRefGoogle Scholar
  9. 9.
    Papari G, Petkov N, Regli WC (2011) Edge and line oriented contour detection: state of the art. Image Vis Comput 29:79–103CrossRefGoogle Scholar
  10. 10.
    Hartley RI, Zisserman A Multiple view geometry in computer visionGoogle Scholar
  11. 11.
    Karabagli B, Simon T, Orteu J-J (2011) Détermination automatique du seuil de binarisation des modules des gradients par modélisation de leur histogramme. In: Proceedings of ORASIS 2011, Praz-sur-Arlym, France, pp 2–8Google Scholar
  12. 12.
    Beveridge J, Graves C, Lesher C Some lessons learned from coding the burns line extraction algorithm in the Darpa image understanding environment. Technical Report CS-96-125, Computer Science Dept. Colorado State Univ.Google Scholar
  13. 13.
    Duchenne O, Bach F, Kweon I-S, Ponce J (2011) A tensor-based algorithm for high-order graph matching. IEEE Trans Pattern Anal Mach Intell 33:2383–2395CrossRefGoogle Scholar
  14. 14.
    Gori M, Maggini M, Sarti L (2005) Exact and approximate graph matching using random walks. IEEE Trans Pattern Anal Mach Intell 27(7):1100–1111CrossRefGoogle Scholar
  15. 15.
    Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell 15(11):1101–1113CrossRefGoogle Scholar
  16. 16.
    Leordeanu M, Hebert M (2005) A spectral technique for correspondence problems using pairwise constraints. In: International Conference of Computer Vision (ICCV), vol 2, pp 1482–1489Google Scholar
  17. 17.
    Grimson W, Lozano-Pérez T (1987) Localizing overlapping parts by searching the interpretation tree. IEEE Trans Pattern Anal Mach Intell 9(4):469–482CrossRefGoogle Scholar
  18. 18.
    Gabriel RK, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Zool 18 (3):259–278CrossRefGoogle Scholar
  19. 19.
    Zhang J, Berg A, Maire M, Malik J SVM-KNN discriminative nearest neighbor classification for visual category recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionGoogle Scholar
  20. 20.
    Delaunay B (1934) Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS 6:793–800Google Scholar
  21. 21.
    Liotta G (1996) Low degree algorithms for computing and checking gabriel graphsGoogle Scholar
  22. 22.
    Zhang J, Marszalek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis 73(2):213–238CrossRefGoogle Scholar
  23. 23.
    Zass R, Shashua A (2008) Probabilistic graph and hypergraph matching, pp 1–8Google Scholar
  24. 24.
    Bouguet J-Y (2004) Camera calibration toolbox for matlabGoogle Scholar
  25. 25.
    Haralick R, Lee C, Ottenberg K, Nôlle M (1991) Analysis and solutions of the three point perspective pose estimation problem, pp 592–598Google Scholar
  26. 26.
    Horaud R, Monga O (1993) Vision par ordinateur, outils fondamentauxGoogle Scholar
  27. 27.
    Shi J, Jitendra M (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  28. 28.
    Nacereddine N, Tabbone S, Ziou D, Hamami L (2009) L’algorithme EM et le modèle de mélanges de gaussiennes généralisées pour la segmentation d’images. Application au contrôle des joints soudés par radiographie, Conf. Traitement et Analyse de l’Information : Méthodes et Applications. pp 217–222Google Scholar
  29. 29.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1):62–66MathSciNetCrossRefGoogle Scholar
  30. 30.
    Arcelli C, Lam K-M, Siu W-C (1985) Extraction of the Euclidean skeleton based on a connectivity criterion. Pattern Recogn 36:721–729Google Scholar
  31. 31.
    Bai X, Latecki L, Liu W-Y (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intell 29(3):449–462CrossRefGoogle Scholar
  32. 32.
    Bouguila N, Ziou D, Hammoud RI- (2007) A Bayesian non-gaussian mixture analysis: application to eye modeling. Conf Comput Vis Pattern Recognit, 2007:1–8Google Scholar
  33. 33.
    Petrovic N, Jovanov L, Pizurica A, Wilfried P (2008) Object tracking using naive Bayesian classifiers 5259:775–784Google Scholar
  34. 34.
    Terrades O, Valveny E, Tabbone S (2009) Optimal classifier fusion in a non-Bayesian probabilistic framework. Conf Comput Vis Pattern Recognit, 2007 31(9):1630–1644Google Scholar
  35. 35.
    Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132zbMATHCrossRefGoogle Scholar
  36. 36.
    Karabagli B, Auclair-Fortier M-F, Simon T, Orteu J-J (2013) Depth map estimation from a single RGB image: principle and calibration, Séjour à l’Université de Sherbrooke, Québec, présenté au congrès de l’Ecole Doctorale EDSYS, TarbesGoogle Scholar
  37. 37.
    Daniel P Peut-on extraire le relief d’une seule image ?, Ph.D. thesis, Institut de Recherche en Informatique de Toulouse (28 Janvier 2000)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Bilal Karabagli
    • 1
    • 2
  • Thierry Simon
    • 1
    • 2
  • Jean-José Orteu
    • 1
  1. 1.Mines Albi, ICA (Institut Clément Ader)Université de Toulouse, Campus JarlardAlbiFrance
  2. 2.IUT de FigeacUniversité de ToulouseFigeacFrance

Personalised recommendations