Skip to main content

Advertisement

Log in

3D printing-assisted design of scaffold structures

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Rapid prototyping has emerged as a very auspicious manufacturing method of fabricating tissue engineering scaffolds. Using a 3D CAD design, the 3D printer features the ability of producing the predetermined forms and structures with very high level of accuracy and repeatability. Additionally, the 3D-printed tissue scaffolds are meant to act as replaceable constructs in a very demanding environment. The challenging conditions of the human body set high criteria demands that the scaffold should be capable of fulfilling. One of the most crucial demands is the capability of the scaffold to exhibit the desired mechanical properties depending on the loading conditions that it must cope up against. A mechanical property investigation of different scaffold designs can provide crucial information concerning this key factor in the criteria profile of a functional scaffold design. The target of the present study is to compare the mechanical properties of different scaffold designs that, however, feature same porosity and similar dimensions. Compressive strength testing was conducted in three 3D-printed scaffold designs. Also, a finite element study was conducted, simulating the compressive strength testing. The results of the compression testing experiment were found to be in good agreement with the computational analysis results. Furthermore, a computational fluid dynamic (CFD) simulation was conducted in order to look into the fluid shear stress inside the scaffold. Finally, the properties of the biomaterial hydroxyapatite were used in order to investigate the compressive and shear mechanical behavior of the aforementioned designs by conducting a finite element study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190. doi:10.1016/j.tibtech.2010.12.008

    Article  Google Scholar 

  2. Chua CK, Leong KF, Cheah CM, Chua SW (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int J Adv Manuf Technol 21:291–301

    Article  Google Scholar 

  3. Wettergreen MA, Bucklen BS, Starly B, Yuksel E, Sun W, Liebschner MAK (2005) Creation of a unit block library of architectures for use in assembled scaffold engineering. Comput Aided Des 37(11):1141–1149. doi:10.1016/j.cad.2005.02.005

    Article  Google Scholar 

  4. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  5. Moroni L, de Wijn JR, van Blitterswijk CA (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7):974–985. doi:10.1016/j.biomaterials.2005.07.023

    Article  Google Scholar 

  6. Amirkhani S, Bagheri R, Yazdi AZ (2012) Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Mater 60(6-7):2778–2789. doi:10.1016/j.actamat.2012.01.044

    Article  Google Scholar 

  7. Almeida HA, Bártolo PJ (2013) Numerical simulations of bioextruded polymer scaffolds for tissue engineering applications. Polym Int 62(11):1544–1552. doi:10.1002/pi.4585

    Google Scholar 

  8. Naing MW, Chua CK, Leong KF, Wang Y (2005) Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyp J 11(4):249–259. doi:10.1108/13552540510612938

    Article  Google Scholar 

  9. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378. doi:10.1016/S0142-9612(03)00030-9

    Article  Google Scholar 

  10. Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476. doi:10.1016/j.actbio.2010.02.002

    Article  Google Scholar 

  11. Feng P, Wei P, Shuai C, Peng S (2014) Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PLoS ONE 9(1):e87755. doi:10.1371/journal.pone.0087755

    Article  Google Scholar 

  12. Saito E, Kang H, Taboas JM, Diggs A, Flanagan CL, Hollister SJ (2010) Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. J Mater Sci Mater Med 21(8):2371–2383. doi:10.1007/s10856-010-4091-8

    Article  Google Scholar 

  13. Melchels FPW, Barradas AMC, van Blitterswijk CA, de Boer J, Feijen J, Grijpma DW (2010) Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6(11):4208–4217. doi:10.1016/j.actbio.2010.06.012

    Article  Google Scholar 

  14. Miranda P, Pajares A, Guiberteau F (2008) Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater 4(6):1715–1724. doi:10.1016/j.actbio.2007.05.020

    Article  Google Scholar 

  15. Bimis A, Karalekas D (2015) Experimental evaluation of hardening strains in a bioceramic material using an embedded optical sensor. Meccanica 50:541–547. doi:10.1007/s11012-013-9869-6

    Article  Google Scholar 

  16. Charrière E, Terrazzoni S, Pittet C, Mordasini PH, Dutoit M, Lemaitre J, Zysset PH (2001) Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22(21):2937–2945. doi:10.1016/S0142-9612(01)00041-2

    Article  Google Scholar 

  17. Miranda P, Saiz E, Gryn K, Tomsia AP (2006) Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopedic applications. Acta Biomater 2(4):457–466. doi:10.1016/j.actbio.2006.02.004

    Article  Google Scholar 

  18. Zhou K, Dong C, Zhang X, Shi L, Chen Z, Xu Y, Cai H (2015) Preparation and characterization of nanosilver-doped porous hydroxyapatite scaffolds. Ceram Int 41(1):1671–1676. doi:10.1016/j.ceramint.2014.09.108

    Article  Google Scholar 

  19. Rodriguez G, Dias J, d'Ávila MA, Bártolo P (2013) Influence of hydroxyapatite on extruded 3D scaffolds. Procedia Eng 59:263–269. doi:10.1016/j.proeng.2013.05.120

    Article  Google Scholar 

  20. Boschetti F, Raimondi MT, Migliavacca F, Dubini G (2006) Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J Biomech 39(3):418–425. doi:10.1016/j.jbiomech.2004.12.022

    Article  Google Scholar 

  21. Lesman A, Blinder Y, Levenberg S (2010) Modeling of flow-induced shear stress applied on 3D cellular scaffolds: implications for vascular tissue engineering. Biotechnol Bioeng 105(3):645–654. doi:10.1002/bit.22555

    Article  Google Scholar 

  22. Shuai C, Mao Z, Lu H, Nie Y, Hu H, Peng S (2013) Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication 5(1):015014. doi:10.1088/1758-5082/5/1/015014

    Article  Google Scholar 

  23. Wieding J, Jonitz A, Bader R (2012) The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 5(8):1336–1347. doi:10.3390/ma5081336

    Article  Google Scholar 

  24. Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J (2012) Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J Biomed Mater Res A 100(5):1347–1355. doi:10.1002/jbm.a.34074

    Article  Google Scholar 

  25. Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR (2012) A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci Polym Ed 23(18):2353–2368. doi:10.1163/156856211X617713

    Google Scholar 

  26. Kim HW, Knowles JC, Kim HE (2005) Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release. J Mater Sci Mater Med 16(3):189–195. doi:10.1007/s10856-005-6679-y

    Article  Google Scholar 

  27. Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71B(1):52–65. doi:10.1002/jbm.b.30065

    Article  MathSciNet  Google Scholar 

  28. Sanzana ES, Navarro M, Ginebra MP, Planell JA, Ojeda AC, Montecinos HA (2014) Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. J Biomed Mater Res A 102(6):1767–1773. doi:10.1002/jbm.a.34845

    Article  Google Scholar 

  29. Rosato DV (2003) Plastics engineered product design. Elsevier Advanced Technology, Oxford

    Google Scholar 

  30. Parthasarathy J, Starly B, Raman S, Christensen A (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249–259. doi:10.1016/j.jmbbm.2009.10.006

    Article  Google Scholar 

  31. Wang XH, Li JS, Hu R, Kou HC, Zhou L (2013) Mechanical properties of porous titanium with different distributions of pore size. Trans Nonferrous Met Soc China 23(8):2317–2322. doi:10.1016/S1003-6326(13)62735-1

    Article  Google Scholar 

  32. Li X, Wang C, Zhang W, Li Y (2010) Fabrication and compressive properties of Ti6Al4V implant with honeycomb-like structure for biomedical applications. Rapid Prototyp J 16(1):44–49. doi:10.1108/13552541011011703

    Article  Google Scholar 

  33. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  34. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38(3):377–399. doi:10.1016/j.jbiomech.2004.09.027

    Article  MathSciNet  Google Scholar 

  35. Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26(35):7481–7503. doi:10.1016/j.biomaterials.2005.05.057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Karalekas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantaros, A., Chatzidai, N. & Karalekas, D. 3D printing-assisted design of scaffold structures. Int J Adv Manuf Technol 82, 559–571 (2016). https://doi.org/10.1007/s00170-015-7386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7386-6

Keywords

Navigation