An automated solution for fixtureless sheet metal forming

Abstract

Manual forming of sheet metal parts through traditional panel beating is a highly skilled profession used in many industries, particularly for sample manufacturing or repair and maintenance. However, this skill is becoming gradually isolated mainly due to the high cost and lack of expertise. Nonetheless, a cost-effective and flexible approach to forming sheet metal parts could significantly assist various industries by providing a method for fast prototyping sheet metal parts. The development of a new fixtureless sheet metal forming approach is discussed in this article. The proposed approach, named Mechatroforming®, consists of integrated mechanisms to manipulate sheet metal parts by a robotic arm under a controlled hammering tool. The method includes mechatronics-based monitoring and control systems for (near) real-time prediction and control of incremental deformations of parts. This article includes description of the proposed approach, the theoretical and modelling backgrounds used to predict the forming, skills learned from manual operations, and proposed automation system being built.

References

  1. 1.

    Echrif SBM, Hrairi M (2011) Research and progress in incremental sheet forming processes. Mater Manuf Process 26(Issue 11):1404–1414, ISSN 1042–6914

    Article  Google Scholar 

  2. 2.

    Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(Issue 11):1453–1459, ISSN 0954–4054

    Article  Google Scholar 

  3. 3.

    Ben Hmida R, Thibaud S, Gilbin A, Richard F (2013) Influence of the initial grain size in single point incremental forming process for thin sheets metal and microparts: experimental investigations. Mater Des 45:155–165. doi:10.1016/j.matdes.2012.08.077, ISSN 0261–3069

    Article  Google Scholar 

  4. 4.

    Yang ZR, Scherer D, Golle M, Hoffmann H (2011) Geometrical modeling of the sheet metal parts in the incremental shrinking process. Key Eng Mater 473:509–515. doi:10.4028/www.scientific.net/KEM.473.509

    Article  Google Scholar 

  5. 5.

    Behera AK, Lauwers B, Duflou JR (2012) Advanced feature detection algorithms for incrementally formed sheet metal parts. Trans Nonferrous Metals Soc China 22(Issue 12):s315–s322. doi:10.1016/S1003-6326(12)61725-7, ISSN 1003–6326

    Article  Google Scholar 

  6. 6.

    Silva M, Martins P (2013) Two-point incremental forming with partial die: theory and experimentation. J Mater Eng Perform 22(Issue 4):1018–1027

    Article  Google Scholar 

  7. 7.

    RADU C (2012) Analysis of the correlation accuracy-distribution of residual stresses in the case of parts processed by SPIF. 14th Mathematical models and methods in modern science, July 1–3, Portugal

  8. 8.

    Chung W, Cho J, Belytschko T (1998) On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng Comput 15(Issue 6):750–776, ISSN 0264–4401

    Article  MATH  Google Scholar 

  9. 9.

    Meier H, Buff B, Smukala V (2009) Robot-based incremental sheet metal forming—increasing the part accuracy in an automated, industrial forming cell. Key Eng Mater 410–411:159–166. doi:10.4028/www.scientific.net/KEM.410-411.159

    Article  Google Scholar 

  10. 10.

    Dieless NC Forming. AMINO North America Corporation, United States. [viewed 20.02.2014]. Available from: http://www.aminonac.ca/technology_dnc.asp

  11. 11.

    Freeform Fabrication Technology. FORD, United States. [viewed 20.02.2014]. Available from: https://media.ford.com/content/fordmedia/fna/us/en/news/2013/07/03/ford-develops-advanced-technology-to-revolutionize-prototyping--.html

  12. 12.

    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(Issue 2):88–114, ISSN 0007–8506

    Article  Google Scholar 

  13. 13.

    Kreimeier D, Buff B, Magnus C, Smukala V, Zhu J (2011) Robot-based incremental sheet metal forming—increasing the geometrical accuracy of complex parts. Key Eng Mater 473:853–860

    Article  Google Scholar 

  14. 14.

    Tanaka H, Naka S, Asakawa N (2012) Development of CAM system using linear servo motor to automate metal hammering—a study on forging-type rapid prototyping system. J Ref Int J Autom Technol 6(Issue 5):604–610

    Google Scholar 

  15. 15.

    Schafer T, Schraft RD (2005) Incremental sheet metal forming by industrial robots. Rapid Prototyp J 11(Issue 5):278–286

    Article  Google Scholar 

  16. 16.

    Opritescu D, Sachnik P, Yang Z, Golle R, Volk W, Hoffmann H, Schmiedl F, Ritter M, Gritzmann P (2012) Automated driving by standardizing and scaling the manufacturing strategy. Procedia CIRP 3:138–143

    Article  Google Scholar 

  17. 17.

    CoDrive. Costesys, Germany. http://cotesys-v2.in.tum.de/research/list-of-projects.html?projectid=33&cHash=e8aa83dcdf. Accessed 21 Feb 2014

  18. 18.

    Scherer D, Yang Z, Hoffmann H (2010) Driving—a flexible manufacturing method for individualized sheet metal products. Int J Mater Form 3:955–958. doi:10.1007/s12289-010-0927-5, ISSN 1960–6206

    Article  Google Scholar 

  19. 19.

    Innovative Sheet Forming Processes. University of Cambridge, UK. http://www.lcmp.eng.cam.ac.uk/wellformed/innovative-sheet-forming-processes. Accessed 21 Feb 2014

  20. 20.

    Nave CR (2014) HyperPhysics (Mechanics). http://hyperphysics.phy-astr.gsu.edu/hbase/avari.html. Accessed 17 Apr 2014

  21. 21.

    Goldsmith W (2001) Impact: the theory and physical behaviour of colliding solids. Dover, Mineola. ISBN 9780486420042

    Google Scholar 

  22. 22.

    Eckold (2015) Kraftformer KF 170 PD. http://www.eckold.com/enus/productsforsheetmetalworking/kraftformer/kraftformerkf170pd.aspx. Accessed 5 Feb 2015

  23. 23.

    Vicon (2015). Vicon System. http://www.vicon.com/. Accessed 14 Apr 2015

  24. 24.

    Vicon (2015) Vicon T-Series. http://www.vicon.com/System/TSeries. Accessed 10 Apr 2015

  25. 25.

    Matlab (2015) Simulink. http://uk.mathworks.com/products/simulink/. Accessed 14 Apr 2015

  26. 26.

    Vicon (2015) Vicon active wand. http://www.vicon.com/System/Calibration. Accessed 10 Apr 2015

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Balaji Ilangovan.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilangovan, B., Monfared, R.P. & Jackson, M. An automated solution for fixtureless sheet metal forming. Int J Adv Manuf Technol 82, 315–326 (2016). https://doi.org/10.1007/s00170-015-7366-x

Download citation

Keywords

  • Automation
  • Flexible manufacturing
  • Rapid prototyping
  • Incremental forming