Prediction of cabling shape during robotic manipulation

  • A. Papacharalampopoulos
  • S. Makris
  • A. Bitzios
  • G. Chryssolouris
Open Access
ORIGINAL ARTICLE

Abstract

The manufacturing assembly process includes the manipulation of rigid and non-rigid parts. This paper discusses a method for the estimation of the cables’ shape for robotic manipulation. The paper uses methods that take into account the mechanical behaviour of materials. More specifically, in the framework of static analyses, a higher-order analytic model of cables is introduced and the need for model calibration is pointed out. To this effect, analytical solutions are compared against experimental data. In addition, the performance of computational models is taken into consideration.

Keywords

Flexible parts handling Harness assembly Dual arm Cable shape prediction 

References

  1. 1.
    Chryssolouris G (2006) Manufacturing systems—theory and practice, 2nd edn. Springer, New YorkGoogle Scholar
  2. 2.
    Makris S, Michalos G, Chryssolouris G (2012) Virtual commissioning of an assembly cell with cooperating robots, advances in decision sciences. Volume, Article ID 428060Google Scholar
  3. 3.
    Papakostas N, Michalos G, Makris S, Zouzias D, Chryssolouris G (2011) Industrial applications with cooperating robots for the flexible assembly. Int J Comput Integr Manuf 24(7):650–660CrossRefGoogle Scholar
  4. 4.
    Michalos G, Makris S, Rentzos L, Chryssolouris G (2010) Dynamic job rotation for workload balancing in human based assembly systems. CIRP J Manuf Sci Technol 2(3):153–160CrossRefGoogle Scholar
  5. 5.
    Ni J, Tang W, Xing Y (2014) Three-dimensional precision analysis with rigid and compliant motions for sheet metal assembly. Int J Adv Manuf Technol 73:805–819CrossRefGoogle Scholar
  6. 6.
    Liu SC, Hu SJ (1997) Variation simulation for deformable sheet metal assemblies using finite element methods. J Manuf Sci Eng 119(3)Google Scholar
  7. 7.
    Dini G, Santochi M (1992) Automated sequencing and subassembly detection in assembly planning. CIRP Ann Manuf Technol 41(1):1–4CrossRefGoogle Scholar
  8. 8.
    Fantoni G, Santochi M, Dini G, Trach K, Scholz-Reiter BJ, Lien TK, Seliger G, Reinhart G, Franke ., Nørgaard Hansen H, Verl A (2014) Grasping devices and methods in automated production processes. CIRP Ann Manuf Technol 63Google Scholar
  9. 9.
    Hu SJ, Ko J, Weyand L, ElMaraghy HA, Lien TK, Koren Y, Bley H, Chryssolouris G, Nasr N, Shpitalni S (2011) Assembly system design and operations for product variety. CIRP Ann Manuf Technol 60(2):715–733CrossRefGoogle Scholar
  10. 10.
    Hermansson T, Bohlin R, Carlson JS, Söderberg R (2013) Automatic assembly path planning for wiring harness installations. J Manuf Syst 32:417–422CrossRefGoogle Scholar
  11. 11.
    Carlson JS, Spensieri D, Söderberg R, Bohlin R, Lindkvist L (2013) Non-nominal path planning for robust robotic assembly. J Manuf Syst 32:429–435CrossRefGoogle Scholar
  12. 12.
    Koo K, Jiang X, Konno A, Uchiyama M (2011) Development of a wire harness assembly motion planner for redundant multiple manipulators. J Rob Mechatronics 23(6):907–918Google Scholar
  13. 13.
    Barzel R (1997) Faking dynamics of ropes and springs. IEEE Comput Graph Appl 17(3):31–39CrossRefGoogle Scholar
  14. 14.
    Wakamatsu H, Hirai S, Iwata K (1995) Modeling of linear objects considering bend, twist, and extensional deformations. Robot Autom, Proc 1995 I.E. Int Conf, Vol. 1Google Scholar
  15. 15.
    Linn J, Stephan T, Carlsson J, Bohlin (2008) Fast simulation of quasistatic rod deformations for VR applications, progress in industrial mathematics at ECMI 2006. Math Ind 12(2008):247–253MathSciNetCrossRefGoogle Scholar
  16. 16.
    Linn, J., Stephan, T. (2007), Fast simulation of quasistatic cable deformations using discrete rod models. Multibody Dynamics 2007, ECCOMAS Thematic Conference, Milano, ItalyGoogle Scholar
  17. 17.
    Giannakopoulos AE, Petridis S, Sophianopoulos DS (2012) Dipolar gradient elasticity of cables. Int J Solids Struct 49(10):1259–1265CrossRefGoogle Scholar
  18. 18.
    Papacharalampopoulos A, Stavropoulos P, Doukas C, Foteinopoulos P, Chryssolouris G (2013) Acoustic emission signal through turning tools: a computational study. (CIRP CMMO) Procedia CIRP, 14th CIRP Conference on Modelling of Machining Operations, Turin, 13-14 June Google Scholar
  19. 19.
    Papacharalampopoulos A, Karlis GF, Charalambopoulos A, Polyzos D (2010) BEM solutions for 2D and 3D dynamic problems in Mindlin’s strain gradient theory of elasticity. CMES 1622(1):1–29MathSciNetGoogle Scholar
  20. 20.
    Papacharalampopoulos A, Vavva MG, Protopappas VC, Fotiadis DI, Polyzos D (2011) A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin’s form II gradient elastic theory. J Acoust Soc Am 130:1060CrossRefGoogle Scholar
  21. 21.
    Irvine HM (1992) Cable structures, Dover PublicationsGoogle Scholar
  22. 22.
    Landau LD, Lifshitz EM (2003-Reprint) Theory of elasticity, Pergamon PressGoogle Scholar
  23. 23.
    Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section, Philos MagGoogle Scholar
  24. 24.
    Davis PJ, Rabinowitz P (1984) Methods of numerical integration, Acad. PressGoogle Scholar
  25. 25.
    Ben-Amoz M (1976) A dynamic theory for composite material. J Appl Math Phys (ZAMP) Vol. 27Google Scholar
  26. 26.
    Papini D (2010) On shape control of cables under vertical static loads, Master’s thesis, Lund UniversityGoogle Scholar
  27. 27.
    Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Papacharalampopoulos
    • 1
  • S. Makris
    • 1
  • A. Bitzios
    • 1
  • G. Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations