Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material

  • T. Xia
  • Y. KaynakEmail author
  • C. Arvin
  • I. S. Jawahir


There has been a substantial growth in using carbon fiber-reinforced plastic (CFRP) composite materials in aerospace and automotive industries due to their superior properties. This experimental study presents results from a comprehensive and systematic study investigating the effects of cryogenic cooling on drilling performance and surface integrity characteristics of CFRP composite material. Experimental data on cutting edge radius of drill bit, outer corner wear of drill bit, trust force, torque, delamination factor, and surface integrity characteristics, including borehole subsurface damage and diameter error of drilled hole, are presented and analyzed comparing dry drilling with cryogenic cooling of CFRP composite material. The findings demonstrate that cryogenic cooling has a profound effect on reducing the cutting edge rounding of drill bit and outer corner wear; it also helps enhancing the surface integrity characteristics of produced hole. However, cryogenic cooling generates larger thrust force, torque, and thus larger delamination factor.


Cryogenic cooling Drilling CFRP composite Tool-wear Surface integrity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kumar D, Singh K (2014) An approach towards damage free machining of CFRP and GFRP composite material: a review. Adv Compos Mater doi: 10.1080/09243046.2014.928966
  2. 2.
    Liu D, Tang Y, Cong W (2012) A review of mechanical drilling for composite laminates. Compos Struct 94(4):1265–1279CrossRefGoogle Scholar
  3. 3.
    Khashaba U (2013) Drilling of polymer matrix composites: a review. J Compos Mater 47(15):1817–1832CrossRefGoogle Scholar
  4. 4.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121CrossRefGoogle Scholar
  5. 5.
    Teti R (2002) Machining of composite materials. CIRP Ann-Manuf Technol 51(2):611–634CrossRefGoogle Scholar
  6. 6.
    Krishnaraj V, Prabukarthi A, Ramanathan A, Elanghovan N, Senthil Kumar M, Zitoune R, Davim J (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B 43(4):1791–1799CrossRefGoogle Scholar
  7. 7.
    Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59(4):481–487CrossRefGoogle Scholar
  8. 8.
    Tsao C, Chiu Y (2011) Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills. Int J Mach Tools Manuf 51(9):740–744CrossRefGoogle Scholar
  9. 9.
    Tsao C, Kuo K, Hsu I (2012) Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core–saw drill. Int J Adv Manuf Technol 59(5-8):617–622CrossRefGoogle Scholar
  10. 10.
    Grilo T, Paulo R, Silva C, Davim J (2013) Experimental delamination analyses of CFRPs using different drill geometries. Compos Part B 45(1):1344–1350CrossRefGoogle Scholar
  11. 11.
    Franke V (2011) Drilling of long fiber reinforced thermoplastics—influence of the cutting edge on the machining results. CIRP Ann-Manuf Technol 60(1):65–68CrossRefGoogle Scholar
  12. 12.
    Faraz A, Biermann D, Weinert K (2009) Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates. Int J Mach Tools Manuf 49(15):1185–1196CrossRefGoogle Scholar
  13. 13.
    De Lacalle LNL, Lamikiz A, Campa FJ, Valdivielso AF, Etxeberria I (2009) Desing and test of a multitooth tool for CFRP milling. J Compos Mater 43(26):3275–3290CrossRefGoogle Scholar
  14. 14.
    Ramulu M, Young P, Kao H (1999) Drilling of graphite/bismaleimide composite material. J Mater Eng Perform 8(3):330–338CrossRefGoogle Scholar
  15. 15.
    Weinert K, Kempmann C (2004) Cutting temperatures and their effects on the machining behaviour in drilling reinforced plastic composites. Adv Eng Mater 6(8):684–689CrossRefGoogle Scholar
  16. 16.
    Shyha I, Soo SL, Aspinwall D, Bradley S, Perry R, Harden P, Dawson S (2011) Hole quality assessment following drilling of metallic-composite stacks. Int J Mach Tools Manuf 51(7):569–578CrossRefGoogle Scholar
  17. 17.
    Park K-H, Beal A, Kim D, Kwon P, Lantrip J (2011) Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools. Wear 271(11):2826–2835CrossRefGoogle Scholar
  18. 18.
    Park K-H, Kwon P (2012) Wear characteristic on BAM coated carbide tool in drilling of composite/titanium stack. Int J Precis Eng Manuf 13(7):1073–1076CrossRefGoogle Scholar
  19. 19.
    Kaynak Y, Lu T, Jawahir IS (2014) Cryogenic machining-induced surface integrity: a review and comparison with Dry, MQL, and flood-cooled machining. Mach Sci Technol 18(2):149–198Google Scholar
  20. 20.
    Wang ZY, Rajurkar KP (2000) Cryogenic machining of hard-to-cut materials. Wear 239(2):168–175CrossRefGoogle Scholar
  21. 21.
    Courbon C, Pusavec F, Dumont F, Rech J, Kopac J (2013) Tribological behaviour of Ti6Al4V and inconel 718 under dry and cryogenic conditions–application to the context of machining with carbide tools. Tribol Int 66:72–82Google Scholar
  22. 22.
    Kaynak Y (2014) Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. Int J Adv Manuf Technol 72(5-8):919–933CrossRefGoogle Scholar
  23. 23.
    Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tool Manu 51(6):500–511Google Scholar
  24. 24.
    Dhar NR, Paul S, Chattopadhyay AB (2001) The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340C steels. Wear 249(10-11):932–942CrossRefGoogle Scholar
  25. 25.
    Pušavec F, Govekar E, Kopač J, Jawahir IS (2011) The influence of cryogenic cooling on process stability in turning operations. CIRP Ann-Manuf Technol 60(1):101–104CrossRefGoogle Scholar
  26. 26.
    Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306(1–2):51–63Google Scholar
  27. 27.
    Bhattacharyya D, Horrigan D (1998) A study of hole drilling in Kevlar composites. Compos Sci Technol 58(2):267–283CrossRefGoogle Scholar
  28. 28.
    Ahmed M (2004) Cryogenic drilling of Kevlar composite laminated. Master of Science in Mechanical Engineering,Thesis, King Fahd University of Petroleum and MineralsGoogle Scholar
  29. 29.
    Yildiz Y, Sundamar MM (2011) Cryogenic machining of composites. Mach Technol Compos Mater: Principles Pract:365–393Google Scholar
  30. 30.
    Durão LMP, Gonçalves DJ, Tavares JMR, de Albuquerque VHC, Aguiar Vieira A, Torres Marques A (2010) Drilling tool geometry evaluation for reinforced composite laminates. Compos Struct 92(7):1545–1550CrossRefGoogle Scholar
  31. 31.
    Harris S, Doyle DE, Vlasveld A, Audy J, Long J, Quick D (2003) Influence of chromium content on the dry machining performance of cathodic arc evaporated TiAlN coatings. Wear 254(1):185–194CrossRefGoogle Scholar
  32. 32.
    Wang Z, Rajurkar K (2000) Cryogenic machining of hard-to-cut materials. Wear 239(2):168–175CrossRefGoogle Scholar
  33. 33.
    Arul S, Samuel Raj D, Vijayaraghavan L, Malhotra S, Krishnamurthy R (2006) Modeling and optimization of process parameters for defect toleranced drilling of GFRP composites. Mater Manuf Process 21(4):357–365CrossRefGoogle Scholar
  34. 34.
    Reed R, Golda M (1994) Cryogenic properties of unidirectional composites. Cryogenics 34(11):909–928CrossRefGoogle Scholar
  35. 35.
    Reed R, Golda M (1997) Cryogenic composite supports: a review of strap and strut properties. Cryogenics 37(5):233–250CrossRefGoogle Scholar
  36. 36.
    Kim RY, Donaldson SL (2006) Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperatures. Compos Struct 76(1):62–66CrossRefGoogle Scholar
  37. 37.
    Jawahir IS, Brinksmeier E, M'Saoubi R, Aspinwall DK, Quteiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann-Manuf Technol 60(2):603–626Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Institute for Sustainable Manufacturing (ISM)University of KentuckyLexingtonUSA
  2. 2.Department of Mechanical Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey

Personalised recommendations