Skip to main content
Log in

Energy criteria for machining-induced residual stresses in face milling and their relation with cutting power

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining-induced residual stresses can significantly influence the performance of machined parts, and many scholars have contributed efforts to measure, evaluate, predict, and control the distribution of residual stresses. In most published researches, the residual stresses are analyzed as the function of cutting parameters, tool parameters, or material properties, but any of these parameters cannot decide the distribution of residual stresses solo and directly. And the commonly used evaluation criteria, like surface value, peak value, and existing range, cannot reflect the overall distribution of residual stresses. In this paper, a new approach to study this issue was proposed, and the cutting loads, the cutting parameters, and the evaluation of residual stress field were unified to the concept of energy and its mutual transformation with mechanical work. The effective cutting power on the machined surface was analyzed, and the integral of strain energy density over depth and the power of stored strain energy were supposed to be the energy criteria of residual stress field. Face milling experiments were carried out, and the cutting forces and the in-depth residual stress distribution were measured. According to the methodology proposed, the results showed that with the increase of effective cutting power, the power of stored strain energy increases with growing rate, which means that the partition of cutting work stored as strain energy increases simultaneously. And the integral of strain energy density over depth grows linearly with the effective cutting power under the experimental conditions in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45 % C steel. Int J Mach Tools Manuf 45(2):131–136. doi:10.1016/j.ijmachtools.2004.08.002

    Article  MathSciNet  Google Scholar 

  2. Wan Y, Cheng K, Fu XL, Liu ZQ (2013) An experiment-based investigation on surface corrosion resistance behaviors of aluminum alloy 7050-T7451 after end milling. Proc Inst Mech Eng J J Eng Tribol 227(11):1297–1305. doi:10.1177/1350650113491084

    Article  Google Scholar 

  3. Schajer GS, Ruud CO (2013) Overview of residual stresses and their measurement. In: Schajer GS (ed) Practical residual stress measurement methods. John Wiley & Sons, pp 1–27

  4. Masoudi S, Amini S, Saeidi E, Eslami-Chalander H (2015) Effect of machining-induced residual stress on the distortion of thin-walled parts. Int J Adv Manuf Technol 76(1-4):597–608. doi:10.1007/s00170-014-6281-x

    Article  Google Scholar 

  5. Outeiro JC, Dias AM, Lebrun JL, Astakhov VP (2002) Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters. Mach Sci Technol 6(2):251–270. doi:10.1081/MST-120005959

    Article  Google Scholar 

  6. El-Khabeery MM, Fattouh M (1989) Residual stress distribution caused by milling. Int J Mach Tools Manuf 29(3):391–401. doi:10.1016/0890-6955(89)90008-4

    Article  Google Scholar 

  7. El-Axir MH (2002) A method of modeling residual stress distribution in turning for different materials. Int J Mach Tools Manuf 42(9):1055–1063. doi:10.1016/S0890-6955(02)00031-7

    Article  Google Scholar 

  8. Capello E (2005) Residual stresses in turning: part I: influence of process parameters. J Mater Process Technol 160(2):221–228. doi:10.1016/j.jmatprotec.2004.06.012

    Article  Google Scholar 

  9. Capello E (2006) Residual stresses in turning: part II. Influence of the machined material. J Mater Process Technol 172(3):319–326. doi:10.1016/j.jmatprotec.2005.10.009

    Article  Google Scholar 

  10. He AD, Ye BY, Qin MY (2012) Influence of machining parameters and pre-stress on residual stress of pre-stress hard turning in 40 Cr steel. Appl Mech Mater 157–158:400–405. doi:10.4028/www.scientific.net/AMM.157-158.400

    Google Scholar 

  11. Jafarian F, Amirabadi H, Fattahi M (2014) Improving surface integrity in finish machining of Inconel 718 alloy using intelligent systems. Int J Adv Manuf Technol 71(5-8):817–827. doi:10.1007/s00170-013-5528-2

    Article  Google Scholar 

  12. M’Saoubi R, Outeiro JC, Changeux B, Lebrun JL, Mor O, Dias A (1999) Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J Mater Process Technol 96(1):225–233. doi:10.1016/S0924-0136(99)00359-3

    Article  Google Scholar 

  13. Arunachalam RM, Mannan MA, Spowage AC (2004) Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44(9):879–887. doi:10.1016/j.ijmachtools.2004.02.016

    Article  Google Scholar 

  14. Zong WJ, Li D, Cheng K, Sun T, Liang YC (2007) Finite element optimization of diamond tool geometry and cutting-process parameters based on surface residual stresses. Int J Adv Manuf Technol 32(7-8):666–674. doi:10.1007/s00170-005-0388-z

    Article  Google Scholar 

  15. Withers PJ, Bhadeshia HKDH (2001) Residual stress. Part 2—nature and origins. Mater Sci Technol 17(4):366–375. doi:10.1179/026708301101510087

    Article  Google Scholar 

  16. Su JC, Young KA, Ma K, Srivatsa S, Morehouse JB, Liang SY (2013) Modeling of residual stresses in milling. Int J Adv Manuf Technol 65(5-8):717–733. doi:10.1007/s00170-012-4211-3

    Article  Google Scholar 

  17. Ji X, Zhang XP, Liang SY (2014) Predictive modeling of residual stress in minimum quantity lubrication machining. Int J Adv Manuf Technol 70(9-12):2159–2168. doi:10.1007/s00170-013-5439-2

    Article  Google Scholar 

  18. Yao CF, Wu DX, Tan L, Ren JX, Shi KN, Yang ZC (2013) Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6. Proc Inst Mech Eng B J Eng Manuf 227(4):483–493. doi:10.1177/0954405413475771

    Article  Google Scholar 

  19. Ma Y, Yu DW, Feng PF (2014) FEM analysis of residual stress distribution and cutting forces in orthogonal cutting with different initial stresses. Mater Sci Forum 800–801:380–384. doi:10.4028/www.scientific.net/MSF.800-801.380

    Article  Google Scholar 

  20. Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann Manuf Technol 61(1):547–550. doi:10.1016/j.cirp.2012.03.100

    Article  Google Scholar 

  21. Liu M, Takagi J, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241. doi:10.1016/j.jmatprotec.2004.02.038

    Article  Google Scholar 

  22. Jiang XH, Li BZ, Yang JG, Zuo X (2013) Effects of tool diameters on the residual stress and distortion induced by milling of thin-walled part. Int J Adv Manuf Technol 68(1-4):175–186. doi:10.1007/s00170-012-4717-8

    Article  Google Scholar 

  23. Yeung H, Sundaram NK, Mann JB, Dale Compton W, Chandrasekar S (2013) Energy dissipation in modulation assisted machining. Int J Mach Tools Manuf 74:41–49. doi:10.1016/j.ijmachtools.2013.07.007

    Article  Google Scholar 

  24. Akyildiz HK, Livatyali H (2014) Effect of cutting energy on fatigue behavior of threaded specimens. Int J Adv Manuf Technol 70(1-4):547–557. doi:10.1007/s00170-013-5278-1

    Article  Google Scholar 

  25. Shao H, Wang HL, Zhao XM (2004) A cutting power model for tool wear monitoring in milling. Int J Mach Tools Manuf 44(14):1503–1509. doi:10.1016/j.ijmachtools.2004.05.003

    Article  Google Scholar 

  26. Fang N (2005) Tool-chip friction in machining with a large negative rake angle tool. Wear 258(5-6):890–897. doi:10.1016/j.wear.2004.09.047

    Article  Google Scholar 

  27. Ozturk S, Altan E (2013) Position of the separation point in machining with a rounded-edge tool. Proc Inst Mech Eng B J Eng Manuf 227(7):965–971. doi:10.1177/0954405413484137

    Article  Google Scholar 

  28. Guo YB, Anurag S, Jawahir IS (2009) A novel hybrid predictive model and validation of unique hook-shaped residual stress profiles in hard turning. CIRP Ann Manuf Technol 58(1):81–84. doi:10.1016/j.cirp.2009.03.110

    Article  Google Scholar 

  29. Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc London Ser A, Containing Pap Math Phys Charact 143(A849):307–326. doi:10.1098/rspa.1934.0004

    Article  Google Scholar 

  30. Liu S, Zhang JF, Feng PF, Yu DW, Wu ZJ (2012) Determination of constitutive equation parameters for face milling 3-D simulation via pressure bar and orthogonal cutting tests. Mater Sci Forum 723:136–142. doi:10.4028/www.scientific.net/MSF.723.136

    Article  Google Scholar 

  31. Lan B, Feng PF, Wu ZJ, Yu DW (2012) Determination of constitutive equation parameters for orthogonal cutting through pressure bar tests and FEA method. Key Eng Mater 499:56–61. doi:10.4028/www.scientific.net/KEM.499.56

    Article  Google Scholar 

  32. Wu DW, Matsumoto Y (1990) The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J Manuf Sci Eng Trans ASME 112(3):245–252. doi:10.1115/1.2899582

    Article  Google Scholar 

  33. Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2):113–123. doi:10.1007/BF02325036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfa Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Feng, P., Zhang, J. et al. Energy criteria for machining-induced residual stresses in face milling and their relation with cutting power. Int J Adv Manuf Technol 81, 1023–1032 (2015). https://doi.org/10.1007/s00170-015-7278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7278-9

Keywords

Navigation