Skip to main content
Log in

Effect of friction stir processing parameters on the microstructural and electrical properties of copper

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) is an innovative technology, based on friction stir welding (FSW) operative principles, which can be used for changing locally the microstructure and the mechanical properties of conventional materials. In this work, the copper alloy C12200 was friction stir processed using two distinct tools, i.e. a scrolled and a conical shoulder tool, in order to promote different thermomechanical conditions inside the stirred volume, and consequently, varied post-processed microstructures. The influence of the tool geometry and tool rotation and traverse speeds on the microstructural and electrical properties of the processed copper alloy was analysed. The processing conditions were found to have an important influence on the electrical conductivity of the processed material. The differences in electrical conductivity were explained based on dislocations density effects. The effect of the dislocations density on electrical conductivity of the processed material was found to prevail over the effect of the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surekha K, Els-Botes A (2011) Development of high strength, high conductivity copper by friction stir processing. Mater Des 32(2):911–916

    Article  Google Scholar 

  2. Barmouz M, Besharati Givi MK, Seyfi J (2011) On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater Charact 62(1):108–117

    Article  Google Scholar 

  3. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310

    Article  Google Scholar 

  4. Su J-Q, Nelson TW, Sterling CJ (2005) Friction stir processing of large-area bulk UFG aluminum alloys. Scr Mater 52(2):135–140

    Article  Google Scholar 

  5. Nascimento F, Santos T, Vilaça P, Miranda RM, Quintino L (2009) Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys. Mater Sci Eng A 506(1–2):16–22

    Article  Google Scholar 

  6. Morishige T, Hirata T, Tsujikawa M, Higashi K (2010) Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing. Mater Lett 64(17):1905–1908

    Article  Google Scholar 

  7. Yu Z, Choo H, Feng Z, Vogel SC (2010) Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy. Scr Mater 63(11):1112–1115

    Article  Google Scholar 

  8. Albakri AN, Mansoor B, Nassar H, Khraisheh MK (2013) Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—a numerical and experimental investigation. J Mater Process Technol 213(2):279–290

    Article  Google Scholar 

  9. Darras BM, Khraisheh MK, Abu-Farha FK, Omar MA (2007) Friction stir processing of commercial AZ31 magnesium alloy. J Mater Process Technol 191(1–3):77–81

    Article  Google Scholar 

  10. Darras B, Kishta E (2013) Submerged friction stir processing of AZ31 Magnesium alloy. Mater Des 47:133–137

    Article  Google Scholar 

  11. Ni DR, Xue P, Wang D, Xiao BL, Ma ZY (2009) Inhomogeneous microstructure and mechanical properties of friction stir processed NiAl bronze. Mater Sci Eng A 524(1–2):119–128

    Article  Google Scholar 

  12. Ni DR, Xiao BL, Ma ZY, Qiao YX, Zheng YG (2010) Corrosion properties of friction-stir processed cast NiAl bronze. Corros Sci 52(5):1610–1617

    Article  Google Scholar 

  13. Barabash OM, Barabash RI, Ice GE, Feng Z, Gandy D (2009) X-ray microdiffraction and EBSD study of FSP induced structural/phase transitions in a Ni-based superalloy. Mater Sci Eng A 524(1–2):10–19

    Article  Google Scholar 

  14. Chabok A, Dehghani K (2010) Formation of nanograin in IF steels by friction stir processing. Mater Sci Eng A 528(1):309–313

    Article  Google Scholar 

  15. Jana S, Mishra R, Baumann J, Grant G (2010) Effect of friction stir processing on microstructure and tensile properties of an investment cast Al-7Si-0.6 Mg Alloy. Metall Mater Trans A 41(10):2507–2521

    Article  Google Scholar 

  16. Ma Z, Sharma S, Mishra R (2006) Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall Mater Trans A 37(11):3323–3336

    Article  Google Scholar 

  17. Santella ML, Engstrom T, Storjohann D, Pan TY (2005) Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356. Scr Mater 53(2):201–206

    Article  Google Scholar 

  18. Karthikeyan L, Senthilkumar VS, Padmanabhan KA (2010) On the role of process variables in the friction stir processing of cast aluminum A319 alloy. Mater Des 31(2):761–771

    Article  Google Scholar 

  19. Mahmoud TS (2013) Surface modification of A390 hypereutectic Al–Si cast alloys using friction stir processing. Surf Coat Technol 228:209–220

    Article  Google Scholar 

  20. Uematsu Y, Tokaji K, Fujiwara K, Tozaki Y, Shibata H (2009) Fatigue behaviour of cast magnesium alloy AZ91 microstructurally modified by friction stir processing. Fatigue Fract Eng M 32(7):541–551

    Article  Google Scholar 

  21. Hsu CJ, Kao PW, Ho NJ (2005) Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing. Scr Mater 53(3):341–345

    Article  Google Scholar 

  22. Hsu CJ, Kao PW, Ho NJ (2007) Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing. Mater Lett 61(6):1315–1318

    Article  Google Scholar 

  23. Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP (2006) Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater 54(19):5241–5249

    Article  Google Scholar 

  24. Lee IS, Kao PW, Ho NJ (2008) Microstructure and mechanical properties of Al-Fe in situ nanocomposite produced by friction stir processing. Intermetallics 16(9):1104–1108

    Article  Google Scholar 

  25. Lee CJ, Huang JC, Hsieh PJ (2006) Mg based nano-composites fabricated by friction stir processing. Scr Mater 54(7):1415–1420

    Article  Google Scholar 

  26. Asadi P, Faraji G, Besharati M (2010) Producing of AZ91/SiC composite by friction stir processing (FSP). Int J Adv Manuf Technol 51(1):247–260

    Article  Google Scholar 

  27. Dixit M, Newkirk JW, Mishra RS (2007) Properties of friction stir-processed Al 1100-NiTi composite. Scr Mater 56(6):541–544

    Article  Google Scholar 

  28. Ke L, Huang C, Xing L, Huang K (2010) Al-Ni intermetallic composites produced in situ by friction stir processing. J Alloys Compd 503(2):494–499

    Article  Google Scholar 

  29. Chuang CH, Huang JC, Hsieh PJ (2005) Using friction stir processing to fabricate MgAlZn intermetallic alloys. Scr Mater 53(12):1455–1460

    Article  Google Scholar 

  30. Su J-Q, Nelson TW, McNelley TR, Mishra RS (2011) Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A 528(16–17):5458–5464

    Article  Google Scholar 

  31. Xue P, Xiao BL, Ma ZY (2012) High tensile ductility via enhanced strain hardening in ultrafine-grained Cu. Mater Sci Eng A 532:106–110

    Article  Google Scholar 

  32. Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Structure of Cu deformed by high pressure torsion. Acta Mater 53(2):393–402

    Article  Google Scholar 

  33. Kommel L, Hussainova I, Volobueva O (2007) Microstructure and properties development of copper during severe plastic deformation. Mater Des 28(7):2121–2128

    Article  Google Scholar 

  34. Mishra A, Kad BK, Gregori F, Meyers MA (2007) Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater 55(1):13–28

    Article  Google Scholar 

  35. Parimi AK, Robi PS, Dwivedy SK (2011) Severe plastic deformation of copper and Al–Cu alloy using multiple channel-die compression. Mater Des 32(4):1948–1956

    Article  Google Scholar 

  36. Wang C, Li F, Li Q, Li J, Wang L, Dong J (2013) A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Mater Des 43:492–498

    Article  MathSciNet  Google Scholar 

  37. Ebrahimi M, Djavanroodi F (2014) Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method. Prog Nat Sci Mater Int 24(1):68–74

    Article  Google Scholar 

  38. Zhilyaev AP, Shakhova I, Belyakov A, Kaibyshev R, Langdon TG (2013) Wear resistance and electroconductivity in copper processed by severe plastic deformation. Wear 305(1–2):89–99

    Article  Google Scholar 

  39. Yang B, Yan J, Sutton MA, Reynolds AP (2004) Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies. Mater Sci Eng A 364(1–2):55–65

    Article  Google Scholar 

  40. Lombard H, Hattingh DG, Steuwer A, James MN (2008) Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy. Eng Fract Mech 75(3–4):341–354

    Article  Google Scholar 

  41. Peel MJ, Steuwer A, Withers PJ, Dickerson T, Shi Q, Shercliff H (2006) Dissimilar friction stir welds in AA5083-AA6082. Part I: process parameter effects on thermal history and weld properties. Metall Mater Trans A 37(A):2183–2193

    Article  Google Scholar 

  42. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Article  Google Scholar 

  43. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32A:2879–2884

    Article  Google Scholar 

  44. Shen JJ, Liu HJ, Cui F (2010) Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Des 31(8):3937–3942

    Article  Google Scholar 

  45. Kumar K, Kailas SV (2008) The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A 485(1–2):367–374

    Article  Google Scholar 

  46. Leal RM, Leitão C, Loureiro A, Rodrigues DM, Vilaça P (2008) Material flow in heterogeneous friction stir welding of thin aluminium sheets: effect of shoulder geometry. Mater Sci Eng A 498(1–2):384–391

    Article  Google Scholar 

  47. Tronci A, McKenzie R, Leal RM, Rodrigues DM (2011) Microstructural and mechanical characterization of 5XXX-H111 friction stir welded tailored blanks. Sci Technol Weld Join 16(5):433–439

    Article  Google Scholar 

  48. Long T, Tang W, Reynolds AP (2007) Process response parameter relationships in aluminium alloy friction stir welds. Sci Technol Weld Join 12(4):311–317

    Article  Google Scholar 

  49. Copper Development Association (1998) High Conductivity Coppers—For Electrical Engineering. http://www.copperalliance.org.uk/docs/librariesprovider5/pub-122-hicon-coppers-for-electrical-engineering-pdf.pdf?sfvrsn=2. Accessed 20 Jan 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, R.M., Galvão, I., Loureiro, A. et al. Effect of friction stir processing parameters on the microstructural and electrical properties of copper. Int J Adv Manuf Technol 80, 1655–1663 (2015). https://doi.org/10.1007/s00170-015-7141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7141-z

Keywords

Navigation