Skip to main content
Log in

The mechanism and application of bronze-bond diamond grinding wheel pulsed laser dressing based on phase explosion

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis of the surface bond removal mechanism for bronze-bond diamond grinding wheels using a pulsed laser. For the first time, the existence of a phase explosion phenomenon during the process of grinding wheel laser dressing is proposed, and the negative effects of a phase explosion on laser dressing are analyzed. Additionally, a theoretical study on phase explosion is conducted. The mechanism of bronze-bond diamond grinding wheel laser dressing is improved, and theoretical guidance for bronze-bond diamond grinding wheel laser dressing is provided. In the experiment, the processing parameters of the laser during phase explosion are studied, and a grinding test under the corresponding conditions is conducted. A high-speed camera is used to observe phase explosion in the laser dressing process. An ultra-depth 3-D microscope system is used to observe the topography of the bronze-bond diamond grinding wheel after dressing and grinding as well as the bronze wheel surface quality. It is concluded that to avoid phase explosion from occurring in the laser dressing of the bronze-bond grinding wheel, chip space around the bond must exist for the abrasive particle protrusions. The processing parameters of laser dressing under certain condition are optimized, and the desired dressing effect is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zahedi A, Tawakoli T, Azarhoushang B, Akbari J (2015) Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. Int J Adv Manuf Technol 76(5):1479–1491. doi:10.1007/S00170-014-6383-5

    Article  Google Scholar 

  2. Ren N, Jiang L, Liu D, Lv L, Wang Q (2014) Comparison of the simulation and experimental of hole characteristics during nanosecond-pulsed laser drilling of thin titanium sheets. Int J Adv Manuf Technol 76(5):735–743. doi:10.1007/S00170-014-6293-6

    Google Scholar 

  3. Lugomer S, Maksimovic A, Farkas B, Geretovszky Z, Szörényi T, Tóth AL, Zolnai Z, Bársony I (2012) Multipulse irradiation of silicon by femtosecond laser pulses: Variation of surface morphology. Appl Surf Sci 258(8):3589–3597. doi:10.1016/j.apsusc.2011.11.121

    Article  Google Scholar 

  4. Kibria G, Doloi B, Bhattacharyya B (2010) Experimental analysis on Nd:YAG laser micro-turning of alumina ceramic. Int J Adv Manuf Technol 50(5):643–650. doi:10.1007/S00170-010-2527-4

    Article  Google Scholar 

  5. Kang RK, Yuan YT, Zhang YP, Ren JX (2001) Truing of diamond wheels by laser. Key Eng Mater 202–203:137–142. doi:10.4028/www.scientific.net/KEM.202-203.137

    Article  Google Scholar 

  6. Xie X-Z, Chen G-Y, Li L-J (2004) Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser. Opt Laser Technol 36(5):409–419. doi:10.1016/j.optlastec.2003.11.002

    Article  Google Scholar 

  7. Chen G, Mei L, Zhang B, Chunrong Y, Shun KJ (2010) Experiment and numerical simulation study on laser truing and dressing of bronze-bonded diamond wheel. Opt Lasers Eng 48(3):295–304. doi:10.1016/j.optlaseng.2009.11.006

    Article  Google Scholar 

  8. Deng H, Chen GY, Zhou C, Li SC, Zhang MJ (2014) Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels. Appl Surf Sci 290:475–481. doi:10.1016/j.apsusc.2013.11.120

    Article  Google Scholar 

  9. Lu QM, Mao SS, Mao XL, Russo RE (2002) Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl Phys Lett 80(17):3072–3074. doi:10.1063/1.1473862

    Article  Google Scholar 

  10. Yung KC, Chen GY, Li LJ (2003) The laser dressing of resin-bonded CBN wheels by a Q-switched Nd: YAG laser. Int J Adv Manuf Technol 22(7):541–546. doi:10.1007/ S00170-002-151

    Article  Google Scholar 

  11. Yoo JH, Jeong SH, Mao XL, Greif R, Russo RE (2000) Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl Phys Lett 76(6):783–785. doi:10.1063/1.125894

    Article  Google Scholar 

  12. Perez D, Lewis LJ (2002) Ablation of solids under femtosecond laser pulses. Phys Rev Lett 89:255504.1–255504.4. doi:10.1103/PhysRevLett.89.255504

    Article  Google Scholar 

  13. Kudryashov SI, Allen SD (2003) Optical transmission measurement of explosive boiling and liftoff of a layer of micron-scale water droplets from a KrF laser-heated Si substrate. J Appl Phys 93(7):4306–4308. doi:10.1063/1.1555272

    Article  Google Scholar 

  14. Hendijanifard M, Willis DA (2015) Validity of the Taylor-Sedov theory for studying laser-induced phase explosion and shock. J Nanosci Nanotechnol 15(4):3249–3253. doi:10.1166/jnn.2015.9649

    Article  Google Scholar 

  15. Marla D, Bhandarkar UV, Joshi SS (2014) A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding. Appl Phys A 116(1):273–285. doi:10.1007/S00339-013-8118-0

    Article  Google Scholar 

  16. Marla D, Bhandarkar UV, Joshi SS (2014) Modeling nanosecond pulsed laser ablation: a focus on temperature dependence of material properties MFGLET 2(2): 13-16. doi:10.1016/j.mfglet.2013.12.001

  17. Bulgakova NM, Bourakov LM (2002) Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt. Appl Surf Sci 197-198:41–44. doi:10.1016/S0169-4332(02)00300-8

    Article  Google Scholar 

  18. Martynyuk MM (1974) Vaporization and boiling of liquid metal in an exploding wire. Sov Phys Tech Phys 19:793–797

    Google Scholar 

  19. Pakhomov AV, Thompson MS, Gregory DA (2003) Laser-induced phase explosion in lead, tin and other elements: microsecond regime and UV-emission. J Phys D Appl Phys 36(17):2067–2075. doi:10.1088/0022-3727/36/17/308

    Article  Google Scholar 

  20. Miotello A, Kelly R (1995) Critical assessment of thermal models for laser sputtering at high fluence. Appl Phys Lett 67(24):3535–3538. doi:10.1063/1.114912

    Article  Google Scholar 

  21. Craciun V, Craciun D (1999) Evidence for volume boiling during laser ablation of single crystalline targets. Appl Surf Sci 138-139:218–223. doi:10.1016/S0169-4332(98)00608-4

    Article  Google Scholar 

  22. Harilal SS, O’Shay B, Tao YZ, Tillack MS (2006) Ambient gas effects on the dynamics of laser produced tin plume expansion. J Appl Phys 99(8):83303–83310. doi:10.1063/1.2188084

    Article  Google Scholar 

  23. Kamp JH, Mayo RM, Bourham MA, Narayan J, Jin C, Duscher G (2003) Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon film. J Appl Phys 93(6):3628–3634. doi:10.1063/1.1555695

    Google Scholar 

  24. Croft DR, Lilley DG (1977) Heat transfer calculations using finite difference equations. Applied Science Publishers LTD, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Genyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Genyu, C., Cong, Z. et al. The mechanism and application of bronze-bond diamond grinding wheel pulsed laser dressing based on phase explosion. Int J Adv Manuf Technol 80, 1641–1653 (2015). https://doi.org/10.1007/s00170-015-7139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7139-6

Keywords

Navigation