Skip to main content

Advertisement

Log in

Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study investigated the selective laser sintering (SLS) of aliphatic-polycarbonate/hydroxyapatite (a-PC/HA) composite scaffolds for medical applications. The effects of material ratios and SLS processing parameters on the porosity, microstructures and mechanical properties of the samples were observed. The optimized proportion in the a-PC/HA composite was found to be 10 wt% HA. The processing parameters were optimized as: 10 W of laser power, 2000 mm/s of scan speed, 0.15 mm of scan spacing, and 0.17 mm of layer thickness. With the optimized process, the scaffold porosity and compressive module were increased to 77.36 % and 26 MPa, respectively. The pores were interconnected, indicating the existence of more space for cell ingrowth and the improvement in the load capability of bone scaffold. The nanoscale HA particles were fully or partially embedded in a-PC matrix and did not decompose during the SLS processing. Crystalline behavior, bioactive activity, and osteoconduction, beneficial for bone ingrowth, scarcely changed before and after sintering. The successful manufacturing of complex scaffold with smooth surface demonstrated that surface roughness could be controlled by optimizing HA content and adjusting the processing parameters. The a-PC/HA composite powder could be used to manufacture complex porous parts by using the SLS process for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  Google Scholar 

  2. Yu H, Matthew HW, Wooley PH, Yang SY (2008) Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone-hydroxyapatite composites. J Biomed Mater Res B Appl Biomater 86(2):541–547

    Article  Google Scholar 

  3. Armillotta A, Pelzer R (2008) Modeling of porous structures for rapid prototyping of tissue engineering scaffolds. Int J Adv Manuf Technol 39:501–511

    Article  Google Scholar 

  4. Salmoria GV, Fancello EA, Roesler CRM, Dabbas F (2012) Functional graded scaffold of HDPE/HA prepared by selective laser sintering: microstructure and mechanical properties. Int J Adv Manuf Technol 65(9–12):1529–1534

    Google Scholar 

  5. Shuai C, Yang B, Peng S, Li Z (2013) Development of composite porous scaffolds based on poly(lactide-co-glycolide)/nano-hydroxyapatite via selective laser sintering. Int J Adv Manuf Technol 69(1–4):51–57

    Article  Google Scholar 

  6. Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Int J Adv Manuf Technol 21(4):302–312

  7. Santos DM, Leong KF, Chua CK (2001) Rapid prototyping applications in medicine. Int J Adv Manuf Technol 18(2):103–117

  8. Yan CZ, Shi YS, Wei QS, Zhang S (2009) Investigation into the pressing parameter of selected laser sintering carbon fiber/nylon composite powder. China thirteenth special processing Symposium of China, pp 496–498

  9. Salmoria GV, Ahrens CH, Klauss P, Paggi RA, Oliveira RG, Lago A (2007) Rapid manufacturing of PE with controlled pore gradients using SLS. Mater Res 10:214–221

    Article  Google Scholar 

  10. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. Int J Adv Manuf Technol 56(1):205–208

    Article  Google Scholar 

  11. Wu L, Ding J (2005) Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D, L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A 75(4):767–777

    Article  Google Scholar 

  12. Shuai C, Mao Z, Lu H, Nie Y, Hu H, Peng S (2013) Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication 5(1):873–886

    Article  Google Scholar 

  13. Shuai C, Feng P, Cao C, Peng S (2013) Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering. Biotechnol Bioproc Eng 18(3):520–527

    Article  Google Scholar 

  14. Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW (2008) Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med 19(3):989–996

    Article  Google Scholar 

  15. Zhang Y, Hao L, Savalani MM, Harris RA, Tanner KE (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. J Biomed Mater Res A 86(3):607–616

    Article  Google Scholar 

  16. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28(22):3338–3348

    Article  Google Scholar 

  17. Laurea S (2009) Polycaprolactone/hydroxyapitite scaffolds for bone tissue engineering. Drexel University, Philadelphia

    Google Scholar 

  18. Eosoly S, Vrana NE, Lohfeld S, Hindie M, Looney L (2012) Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS). Mat Sci Eng C-Mater 32(8):2250–2257

    Article  Google Scholar 

  19. Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51:245–256

    Article  Google Scholar 

  20. Ho HCH, Gibson I, Cheung WL (1999) Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol 90:204–210

    Article  Google Scholar 

  21. Ho HCH, Cheung WL, Gibson I (2003) Morphology and properties of selective laser sintered bisphenol a polycarbonate. Ind Emg Chem Res 42(9):1850–1862

    Article  Google Scholar 

  22. Fan KM, Cheung WL, Gibson I (2005) Movement of powder bed material during the selective laser sintering of bisphenol-A polycarbonate. Rapid Prototyp J 11(4):188–198

    Article  Google Scholar 

  23. Liao J, Zhang L, Zuo Y, Wang H, Li J, Zou Q, Li Y (2009) Development of nanohydroxyapatite/polycarbonate composite for bone repair. J Biomater Appl 24(1):31–45

    Article  Google Scholar 

  24. Zheng YL, Li YL, Liu X, Liu ZY, Yang W, Li W, Yang MB (2008) Mechanical and thermal properties of polycarbonate/hydroxyapatite nanocomposites. J Polym Mater Sci Eng 24(4):62–65

    Article  Google Scholar 

  25. Dong QX, Chen QJ, Yang W, Zheng YL, Liu X, Li YL, Yang MB (2008) Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite. J Appl Polym Sci 109(1):659–663

    Article  Google Scholar 

  26. Feng J, Zhuo RX, Zhang XZ (2012) Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci 37:211–236

  27. Song X, Shi Y, Song P, Wei Q, Li W (2014) Effects of the processing parameters on porosity of selective laser sintered aliphatic polycarbonate. In: International Conference on Mechatronics, Robotics and Automation, Zhuhai, China. Trans Tech Publications Ltd, pp 1000–1004

  28. Savalani MM, Hao L, Dickens PM, Zhang Y, Tanner KE, Harris RA (2012) The effects and interactions of fabrication parameters on the properties of selective laser sintered hydroxyapatite polyamide composite biomaterials. Rapid Prototyp J 18(1):16–27

    Article  Google Scholar 

  29. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123

    Article  Google Scholar 

  30. Harris RA, Tanner KE, Zhang Y, Hao L, Savalani MM (2007) Fabrication of porous bioactive structures using the selective laser sintering technique. J Eng Med 221(8):873–886

    Article  Google Scholar 

  31. Lima DD, Lemperle SM, Chen PC, Holmes RE, Colwell CW (1998) Bone response to implant surface morphology. J Arthroplasty 13(8):928–934

    Article  Google Scholar 

  32. Yuan HP, Kurashina K, de Bruijn JD, Li YB, de Groot K, Zhang XD (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20(19):1799–1806

    Article  Google Scholar 

  33. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  Google Scholar 

  34. Kruth JP, Levy G, Klocke F, Childs THC (2007) Consolidation phenomenon in laser and power bed-based layered manufacturing. CIRP Ann 56(2):730–759

    Article  Google Scholar 

  35. Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H (1998) BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 39(2):190–199

    Article  Google Scholar 

  36. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res Off J Am Soc Bone Miner Res 14(7):1167–1174

    Article  Google Scholar 

  37. Itala AI, Ylanen HO, Ekholm C, Karlsson KH, Aro HT (2001) Pore diameter of more than 100 mm is not requisite for bone ingrowth in rabbits. J Biomed Mater Res 58(6):679–683

    Article  Google Scholar 

  38. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4(3):433–456

    Article  Google Scholar 

  39. Lin ASP, Barrows TH, Cartmell SH, Guldberg RE (2003) Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24(3):481–489

    Article  Google Scholar 

  40. Liu K, Shi Y, He W, Li C, Wei Q, Liu J (2012) Densification of alumina components via indirect selective laser sintering combined with isostatic pressing. Int J Adv Manuf Technol 67(9–12):2511–2519

    Google Scholar 

  41. Hon KKB, Gill TJ (2004) Experimental investigation into the selective laser sintering of silicon carbide polyamide composites. J Eng Manuf 218(10):1249–1256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song XiaoHui or Wei QingSong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

XiaoHui, S., Wei, L., PingHui, S. et al. Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int J Adv Manuf Technol 81, 15–25 (2015). https://doi.org/10.1007/s00170-015-7135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7135-x

Keywords

Navigation