Skip to main content
Log in

Global sensitivity analysis of a CNC machine tool: application of MDRM

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Understanding the error propagation mechanism of a CNC machine tool is a prerequisite to improve machine tool kinematic accuracy by other techniques. This paper presents system reliability and global sensitivity analyses of a machine tool with the multiplicative dimensional reduction method (M-DRM). Reliability of the machine tool is defined as the probability that output error remains within a specified limit in entire target trajectory of tool cutter. This reliability problem is formulated as a series reliability problem that is solved using probability distribution of the maximal positioning error. The variance-based global sensitivity analysis is preformed to screen significant error components of the system kinematic error model. The proposed method is illustrated by a three-axis vertical milling machine tool for system reliability and global sensitivity analyses. Results are verified by Monte-Carlo simulation method. The procedure would be easily applied for probability-based kinematic analysis of machine tools based on other error models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools - a review: Part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  2. Eskandari S, Arezoo B, Abdullah A (2013) Positional, geometrical, and thermal errors compensation by tool path modification using three methods of regression, neural networks, and fuzzy logic. Int J Adv Manuf Technol 65(9–12):1635–1649

    Article  Google Scholar 

  3. Li Y, Zhao W, Wu W, Lu B, Chen Y (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427

    Article  Google Scholar 

  4. Chen G, Yuan J, Ni J (2001) A displacement measurement approach for machine geometric error assessment. Int J Mach Tools Manuf 41(1):149–161

    Article  Google Scholar 

  5. Lu Y, Islam M (2012a) A new approach to thermally induced volumetric error compensation. Int J Adv Manuf Technol 62(9–12):1071–1085

    Article  Google Scholar 

  6. Díaz-Tena E, Ugalde U, López de Lacalle L, de la Iglesia A, Calleja A, Campa F (2013) Propagation of assembly errors in multitasking machines by the homogenous matrix method. Int J Adv Manuf Technol 68(1–4):149–164

    Article  Google Scholar 

  7. Okafor A, Ertekin Y M (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tools Manuf 40(8):1199–1213

    Article  Google Scholar 

  8. Lin Y, Shen Y (2003) Modelling of five-axis machine tool metrology models using the matrix summation approach. Int J Adv Manuf Technol 21(4):243–248

    Article  Google Scholar 

  9. Yang S H, Kim K H, Park Y, Lee S G (2004) Error analysis and compensation for the volumetric errors of a vertical machining centre using a hemispherical helix ball bar test. Int J Adv Manuf Technol 23(7–8):495–500

    Article  Google Scholar 

  10. de Aquino Silva J, Hocken R, Miller J, Caskey G, Ramu P (2009) Approach for uncertainty analysis and error evaluation of four-axis co-ordinate measuring machines. Int J Adv Manuf Technol 41(11–12):1130–1139

    Article  Google Scholar 

  11. Guo Q, Xu R, Mao C, Xu H, Yang J (2014) Application of information fusion to volumetric error modeling of CNC machine tools. The International Journal of Advanced Manufacturing Technology, pp 1–9

  12. Raksiri C, Parnichkun M (2004) Geometric and force errors compensation in a 3-axis CNC milling machine. Int J Mach Tools Manuf 44(12–13):1283–1291

    Article  Google Scholar 

  13. Tan K, Huang S, Lim S, Leow Y, Liaw H (2006) Geometrical error modeling and compensation using neural networks. IEEE Trans Syst Man Cybern Part C Appl Rev 36(6):797–809

    Article  Google Scholar 

  14. Ratchev S, Liu S, Huang W, Becker A (2006) An advanced FEA based force induced error compensation strategy in milling. Int J Mach Tools Manuf 46(5):542–551

    Article  Google Scholar 

  15. Zhang H, Yang J, Zhang Y, Shen J, Wang C (2011) Measurement and compensation for volumetric positioning errors of CNC machinetools considering thermal effect. Int J Adv Manuf Technol 55(1–4):275–283

    Article  Google Scholar 

  16. Yang H, Ni J (2005) Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy. Int J Mach Tools Manuf 45(1):1–11

    Article  MathSciNet  Google Scholar 

  17. Lu Y, Islam M (2012b) A new approach to thermally induced volumetric error compensation. Int J Adv Manuf Technol 62(9–12):1071–1085

    Article  Google Scholar 

  18. Ahn K G, Cho D W (2000) An analysis of the volumetric error uncertainty of a three-axis machine tool by Beta distribution. Int J Mach Tools Manuf 40(15):2235–2248

    Article  Google Scholar 

  19. Zhu W, Wang Z, Yamazaki K (2010) Machine tool component error extraction and error compensation by incorporating statistical analysis. Int J Mach Tools Manuf 50(9): 798–806

    Article  Google Scholar 

  20. Rajagopalan S, Cutkosky M (2003) Error analysis for the in-situ fabrication of mechanisms. J Mech Des 125(4):809–822

    Article  Google Scholar 

  21. Caro S, Bennis F, Wenger P (2005) Tolerance synthesis of mechanisms: a robust design approach. J Mech Des 127(1): 86–94

    Article  Google Scholar 

  22. Andolfatto L, Mayer J, Lavernhe S (2011) Adaptive Monte Carlo applied to uncertainty estimation in five axis machine tool link errors identification with thermal disturbance. Int J Mach Tools Manuf 51(7):618–627

  23. Yang Z, McWilliam S, Popov A, Hussain T (2013) A probabilistic approach to variation propagation control for straight build in mechanical assembly. Int J Adv Manuf Technol 64(5–8):1029–1047

    Article  Google Scholar 

  24. Cui C, Fu S, Huang F (2009) Research on the uncertainties from different form error evaluation methods by CMM sampling. Int J Adv Manuf Technol 43(1–2):136–145

    Article  Google Scholar 

  25. Savage G J, Son Y K (2009) Dependability-based design optimization of degrading engineering systems. J Mech Des ASME 131(1):011002, 10

    Article  Google Scholar 

  26. Mavroidis C, Dubowsky S, Drouet P, Hintersteiner J, Flanz J (1997) A systematic error analysis of robotic manipulators: application to a high performance medical robot. In: Proceedings of the 1997 IEEE International Conference of Robotics and Automation, pp 980–985

  27. Chen G, Liang Y, Sun Y, Chen W, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68(9–12):2525–2534

    Article  Google Scholar 

  28. Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297

    Article  MathSciNet  MATH  Google Scholar 

  29. Rabitz H, Aliṡ Ö (1999) General foundations of high-dimensional model representations. J Math Chem 25(2):197–233

    Article  MathSciNet  MATH  Google Scholar 

  30. Efron B, Stein C (1981) The jackknife estimate of variance. Ann Stat:586–596

  31. Saltelli A, Sobol’ I (1995) About the use of rank transformation in sensitivity analysis of model output. Reliab Eng Syst Saf 50(3):225–239

    Article  Google Scholar 

  32. Oakley J, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a Bayesian approach. J R Stat Soc Ser B (Statistical Methodology) 66(3):751–769

    Article  MathSciNet  MATH  Google Scholar 

  33. Homma T, Saltelli A (1996a) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  34. Sobol’ I (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55(1-3):271–280

    Article  MathSciNet  MATH  Google Scholar 

  35. Ishigami T, Homma T (1990) An importance quantification technique in uncertainty analysis for computer models. In: IEEE Proceedings of First International Symposium on Uncertainty Modeling and Analysis, pp 398–403

  36. Rahman S (2011) Global sensitivity analysis by polynomial dimensional decomposition. Reliab Eng Syst Saf 96(7):825–837

    Article  Google Scholar 

  37. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93 (7):964–979

    Article  Google Scholar 

  38. Zhang X, Pandey M D (2014) An effective approximation for variance-based global sensitivity analysis. Reliab Eng Syst Saf 121(1):164–174

    Article  Google Scholar 

  39. Zhang X, Pandey M D (2013) Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method. Struct Saf 43(4):28–40

    Article  Google Scholar 

  40. Zhang X, Pandey M D, Zhang Y (2014) Computationally efficient reliability analysis of mechanisms based on a multiplicative dimensional reduction method. J Mech Des 136(6):061006,11

    Article  Google Scholar 

  41. Homma T, Saltelli A (1996b) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  42. Tarantola S, Gatelli D, Mara T (2006) Random balance designs for the estimation of first order global sensitivity indices. Reliab Eng Syst Saf 91(6):717–727

    Article  Google Scholar 

  43. Son Y, Savage G (2007) Set theoretic formulation of performance reliability of multiple response time-variant systems due to degradations in system components. Qual Reliab Eng Int 23(2):171–188

    Article  Google Scholar 

  44. Savage G, Son Y (2011) The set-theory method for systems reliability of structures with degrading components. Reliab Eng Syst Saf 96(1):108–116

    Article  Google Scholar 

  45. Pandey M, Zhang X (2012) System reliability analysis of the robotic manipulator with random joint clearances. Mech Mach Theory 58(12):137–152

    Article  Google Scholar 

  46. Li J, Chen J, Fan W (2007) The equivalent extreme-value event and evaluation of the structural system reliability. Struct Saf 29(2):112–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y. & Pandey, M.D. Global sensitivity analysis of a CNC machine tool: application of MDRM. Int J Adv Manuf Technol 81, 159–169 (2015). https://doi.org/10.1007/s00170-015-7128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7128-9

Keywords

Navigation