Skip to main content
Log in

Global stabilization of an adaptive observer-based controller design applied to induction machine

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, the problem of global stabilization of an adaptive observer-based controller design applied to an induction machine (IM) is considered. The IM control usually requires the speed measurement. Formerly, to reject this sensor, an adaptive observer is offered to estimate the rotor speed. Furthermore, a novel control based on the Lyapunov principle is described in order to advance the robust properties of the controller. In fact, the main idea of this control is based on a suitable choice of the voltage control values that guarantee a global stability of the controlled system. The global stability investigation of the closed loop system is described and verified. Simulation results are offered in order to show the performance of the proposed scheme under parametric uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiasson J (1995) Non linear controllers for induction motors. IFAC Conference System Structure and Control, Nantes

    Google Scholar 

  2. Bodson M, Chiasson J (1994) High-performance induction motor control via input-output linearization. IEEE Control Syst 14(4):25–33

    Article  Google Scholar 

  3. Chiasson J (1998) A new approach to dynamic feedback linearization control of an induction motor. IEEE Trans Autom Control 43(3):391–397

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiasson J (2005) Modeling and high-performance control of electric machines, Wiley-Interscience A John Wiley & Sons, Inc., Publication

  5. Khalil HK, Elias GS (2004) Sensorless speed control of induction motors. Proceeding of the 2004 America Control Conference Boston, pp.1127-1131

  6. Faa JL, Rong JW, Pao CL (1999) Robust speed sensorless induction motor drive. IEEE Trans Aerosp Electron Syst 35(2):566–578

    Article  Google Scholar 

  7. Kwan CM, Lewis FL, Yeung KS (1996) Adaptive control of induction motors without flux measurements. Automatica 32(6):903–908

    Article  MathSciNet  MATH  Google Scholar 

  8. Soltani J, Arab GR, Makadeh, Hosseiny SH (2004). A new adaptive direct torque control (DTC) scheme based-on SVW for adjustable speed sensorless induction motor drive. The 30th Annual Conference of the IEEE Industrial Electric Society, pp.1111–1115

  9. Kubota H (1994) Speed sensorless field-oriented control of induction motor with rotor resistance adaptation. IEEE Trans Ind Appl 30(5):1219–1224

    Article  Google Scholar 

  10. Marino R, Tomei P, Verelli CM (2005) Adaptive control for speed sensorless induction motors with uncertain load torque and rotor resistance. Int J Adapt Control Signal Process

  11. Aurora C, Ferrari A. Speed regulation of induction motors: an adaptive sensorless sliding mode control scheme. IEEE ACC’04, Boston, USA, 30 June-2 July 2004

  12. Barambones O, Alkorta P (2011) A robust vector control for induction motor drives with an adaptive sliding-mode control law. J Franklin Inst 348:300–314

    Article  MATH  Google Scholar 

  13. Lascu C, Boldea I, Blaabbjerg F (2003) Very low-speed sensorless variable structure control of induction machine drives without signal injection. IEEE Trans Ind Appl 1395–1401

  14. Zhang Y, Changxi J, Utkin VI (2000) Sensorless sliding-mode control of induction motors. IEEE Trans Ind Appl 47(6):1286–1297

    Google Scholar 

  15. Soltani J, Markadeh GRA (2005) Sliding-mode control for speed sensorless induction machine drive using an adaptive nonlinear rotor flux observer. IEEE Int Conf Power Electron Drives Syst

  16. Lascu C, Boldea I, Blaabbjerg F (2004) Direct torque control of sensorless induction motors drives: a sliding-mode approach. IEEE Trans Ind Appl 40(2):582–590

    Article  Google Scholar 

  17. Rasmussen H, Vadstrup P Borsting H (2001) Full adaptive backstepping design of a speed sensorless field oriented controller for an induction Motor. IEEE Ind Appl Conf

  18. Lin FJ, Lee CC (2000) Adaptive backstepping control for linear induction motor drive to track periodic references. IET Electr Power Appl 147(6):449–458

    Article  Google Scholar 

  19. Peresada S, Tilli A, Morici R (1999) High performance indirect field oriented output feedback control of induction motors. Automatica 35(6):1033–1047

    Article  MATH  Google Scholar 

  20. Agrebi Y, Triki M, Koubaa Y, Boussak M (2007) Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme. J Electr Syst 3(3):131–143

    Google Scholar 

  21. Blasco-Giménez R, Asher G, Summer M, Bradley K (1996) Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: stability analysis for the closed loop drive. IEEE Proc Electr Power Appl 143:113–122

    Article  Google Scholar 

  22. Koubaa Y, Boussak M (2005) Rotor resistance tuning for indirect stator flux oriented induction motor drive based on MRAS scheme. Rev Eur Trans Electr Power 15(6):557–570

    Article  Google Scholar 

  23. Zhen L, Xu L (1998) Sensorless field orientation control of induction machines based on mutual MRAS scheme. IEEE Trans Ind Appl 45(5):824–831

    Google Scholar 

  24. Kim YR, Sul SK, Park MH (1994) Speed sensorless vector control of induction motor using an extended Kalman filter. IEEE Trans Ind Appl 30(5):1225–1233

    Article  Google Scholar 

  25. Maes J, Melkebeek JA (2000) Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Trans Ind Appl 36(3):778–785

    Article  Google Scholar 

  26. Shi KL, Wong YK, Ho SL (2002) Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans Ind Electr 49(1):124–133

    Article  Google Scholar 

  27. Zai LC, Demarco CL, Lipo TA (1992) An extended Kalman filter approach to rotor time-constant measurement in PWM induction motor drives. IEEE Trans Ind Electron 28(1):96–104

    Google Scholar 

  28. Akatsu K, Kawamura A (2000) Online rotor resistance estimation using the transient state under the speed sensorless control of induction motor. IEEE Trans Power Electr 15(3):553–560

    Article  Google Scholar 

  29. Jingchuan L, Xu L, Zhang Z (1999) An adaptive sliding-mode observer for induction motor sensorless speed control. IEEE Trans Ind Electron 46(1):100–110

    Article  Google Scholar 

  30. Kubota H, Matsuse K (1994) Speed sensorless field-oriented control of induction motor with rotor resistance adaptation. IEEE Trans Ind Electron 30(5):1219–1224

    Google Scholar 

  31. Kubota H, Matsuse K, Nakano T (1993) Dsp-based speed adaptive flux observer of induction motor. IEEE Trans Ind Electron 29:344–348

    Google Scholar 

  32. Atkinson DJ, Finch JW, Acamley PP (1996) Estimation of rotor resistance in induction motor. IEE Proc Electr Power Appl 143(1):87–94

    Article  Google Scholar 

  33. Du T, Vas P, Stronach F (1995) Design and application of extended observers for joint state and parameter estimation in high-performance AC drivers. IEE Proc Electr Power Appl 142(2):71–78

    Article  Google Scholar 

  34. Kowalska TO (1989) Application of extended Luenberger observer for flux and rotor time-constant estimation in induction motor drives. IEE Proc Control Theory Appl 136(6):324–330

    Article  MATH  Google Scholar 

  35. Vaclavek P, Blaha P (2006) Lyapunov-function-based flux and speed observer for AC induction motor sensorless control and parameters estimation. IEEE Trans Ind Electron 53(1):138–145

    Article  Google Scholar 

  36. Bojoi R, Griva G, Profumo F (2006) Field oriented control of dual three-phase induction motor drives using a Luenberger flux observer. Ind Appl Conf 3:1253–1260

    Google Scholar 

  37. Rehman H, Dhaouadi R (2008) A fuzzy learning-sliding mode controller for direct field-oriented induction machines. Neurocomputing 71:2693–2701

    Article  Google Scholar 

  38. Karanayil B, Rahman MF, Grantham C (2007) Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive. IEEE Trans Ind Electron 54(1):167–176

    Article  Google Scholar 

  39. Marino R, Tomei P, Verelli CM (2004) A global tracking control for speed sensorless induction motors. Automatica 40(6):1071–1077

    Article  MathSciNet  MATH  Google Scholar 

  40. Feemster M, Aquino P, Dawson DM, Behal A (2001) Sensorless rotor velocity tracking control for induction motors. IEEE Trans Control Syst Technol 9(4):645–653

    Article  Google Scholar 

  41. Ghanes M (2005) Observation et Commande de la Machine Asynchrone sans Capteur Mécanique, thèse de doctorat, IRCCyN (Ecole Centrale de Nantes)

  42. Traoré D, de Leon J, Glumineau A (2012) Adaptive interconnected observer-based backstepping control design for sensorless induction motor. Automatica 48:682–687

    Article  MATH  Google Scholar 

  43. Boukettaya G et al (2010) A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System. Energy 35:132–139

    Article  Google Scholar 

  44. Khalil HK (1992) Nonlinear systems. Nonlinear theories

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Naifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naifar, O., Boukettaya, G. & Ouali, A. Global stabilization of an adaptive observer-based controller design applied to induction machine. Int J Adv Manuf Technol 81, 423–432 (2015). https://doi.org/10.1007/s00170-015-7099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7099-x

Keywords

Navigation