Skip to main content
Log in

Effects of material parameters on springback of 5052 aluminium alloy sections with hat profile in rotary draw bending

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The springback is one of the key factors affecting the forming quality of 5052 aluminium alloy sections with hat profile in rotary draw bending. To study the effects of material parameters of the sections on springback, the elasto-plastic finite element bending model and unloading springback model of the process were proposed based on ABAQUS Explicit/Standard platforms. Then, the influence regularities of material parameters on springback during the process were investigated using finite element method combined with experimental and theoretical researches. The results show that springback angle and radius increase with the increase of strength factor and yield strength while decrease with the increase of Young’s modulus and strain-hardening exponent. Then, the material selection for reducing the springback of aluminium alloy section with hat profile in bending is obtained. The achievement can provide a guideline for controlling springback and selecting the material of the aluminium alloy profile rotary draw bending process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao G, Liu Y, Yang H (2010) Effect of clearance on wrinkling of thin-walled rectangular tube in rotary draw bending process. Int J Adv Manuf Technol 50:85–92. doi:10.1007/s00170-009-2508-7

    Article  Google Scholar 

  2. Paulsen F, Welo T (2001) Cross-sectional deformations of rectangular hollow sections in bending: part I—experiments. Int J Mech Sci 43(1):109–129. doi:10.1016/S0020-7403(99)00106-X

    Article  MATH  Google Scholar 

  3. Lademo OG, Hopperstad OS, Pedersenc KO (2002) Modeling of plastic anisotropy in heat-treated aluminium extrusions. J Mater Process Technol 125–126:84–88. doi:10.1016/S0924-0136(02)00289-3

    Article  Google Scholar 

  4. Cao J, Kinsey BL, Yao H, Viswanathan V, Song N (2001) Next generation stamping dies-controllability and flexibility. Robot Comput Integr Manuf 17(1):49–56. doi:10.1016/S0736-5845(00)00036-3

    Article  Google Scholar 

  5. Leu DK (1997) A simplified approach for evaluating bendability and springback in plastic bending of anisotropic sheet metals. J Mater Process Technol 66(1–3):9–17. doi:10.1016/S0924-0136(96)02453-3

    Article  Google Scholar 

  6. Liu J, Tang C, Ning R (2009) Plastic-formation analysis and springback calculating of thin-wall tube pure-bending. J Plast Eng 16(2):5–14 (In Chinese)

    Google Scholar 

  7. Gu R, Yang H, Zhan M, Li H (2006) Springback of thin-walled tube NC precision bending and its numerical simulation. Trans Nonferrous Metals Soc China 16(S2):s631–s638. doi:10.1016/S1003-6326(06)60268-9

    Article  Google Scholar 

  8. Dong W, Liu Y, Yang H (2011) Sensitivity analysis of material parameters on spring-back of 3A21 aluminum alloy rectangular tube in the bending process. Metals Sci Technol 19(5):1–5 (In Chinese)

    Google Scholar 

  9. Zhu YX, Liu YL, Yang H (2014) Effect of mandrel-cores on springback and sectional deformation of rectangular H96 tube NC bending. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6657-y

    Google Scholar 

  10. Zhu YX, Liu YL, Li HP, Yang H (2013) Comparison between the effects of PVC mandrel and mandrel-cores die on the forming quality of bending rectangular H96 tube. Int J Mech Sci 76:132–143. doi:10.1016/j.ijmecsci.2013.09.011

    Article  Google Scholar 

  11. Liang J, Gao S, Teng F, Yu P, Song X (2014) Flexible 3D stretch-bending technology for aluminum profile. Int J Adv Manuf Technol 71:1939–1947. doi:10.1007/s00170-013-5590-9

    Article  Google Scholar 

  12. Strano M (2005) Automatic tooling design for rotary draw bending of tubes. Int J Adv Manuf Technol 26(7–8):733–740. doi:10.1007/s00170-003-2055-6

    Article  Google Scholar 

  13. Li H, Yang H, Liu K (2013) Towards an integrated robust and loop tooling design for tube bending. Int J Adv Manuf Technol 65(9–12):1303–1318. doi:10.1007/s00170-012-4258-1

    Article  Google Scholar 

  14. Jiang ZQ, Yang H, Zhan M, Xu XD, Li GJ (2010) Coupling effects of material properties and the bending angle on the springback angle of a titanium alloy tube during numerically controlled bending. Mater Des 31:2001–2010. doi:10.1016/j.matdes.2009.10.029

    Article  Google Scholar 

  15. Ramezani M, Ripin ZM (2010) A friction model for dry contacts during metal-forming processes. Int J Adv Manuf Technol 51:93–102. doi:10.1007/s00170-010-2608-4

    Article  Google Scholar 

  16. Zhao GY, Liu YL, Dong CS, Yang H, Fan XG (2010) Analysis of wrinkling limit of rotary-draw bending process for thin-walled rectangular tube. J Mater Process Technol 210(9):1224–1231. doi:10.1016/j.jmatprotec.2010.03.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R.Y., Zhao, G.Y., Guo, Z.H. et al. Effects of material parameters on springback of 5052 aluminium alloy sections with hat profile in rotary draw bending. Int J Adv Manuf Technol 80, 1067–1075 (2015). https://doi.org/10.1007/s00170-015-7056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7056-8

Keywords

Navigation