Skip to main content
Log in

Improvement of ECAP process by imposing ultrasonic vibrations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In a few last decades, equal-channel angular pressing (ECAP) has been one of the most prominent procedures for fabrication of ultrafine-grained (UFG) structures among various severe plastic deformation (SPD) techniques. The objective of this paper is to experimentally investigate the influence of longitudinal ultrasonic vibrations on the ECAP process. A robust experimental ECAP system was designed and manufactured, in which the punch can be excited by ultrasonic vibrations. ECAP experiments were carried out with and without ultrasonic vibration on pure Al. The microstructure of the specimens formed with ultrasonic-assisted ECAP and conventional ECAP were studied. The results of this study showed that superimposing ultrasonic vibrations on the ECAP process could improve the grain refinement efficiency. The grains of the specimens after conventional ECAP process were refined to 45 μm, while by applying ultrasonic vibration with amplitudes of 2.5 and 5 μm, the grains were refined to 28.2 and 22 μm , respectively. Using higher vibration amplitudes caused more refinement of the grains. The homogeneity of the microstructure after four passes of ECAP was also improved by 26.7 % while using ultrasonic vibration with amplitude of 2.5 μm. Higher vibration amplitudes made a more homogenous structure. The yield strength and ultimate tensile strength of the specimens after one pass of ECAP were higher in comparison with the conventional ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981

    Article  Google Scholar 

  2. Valiev R, Mulyukov R, Ovchinnikov V, Shabashov V (1991) Mössbauer analysis of submicrometer grained iron. Scr Metall Mater 25(12):2717–2722

    Article  Google Scholar 

  3. Salishchev GA, Imayev RM, Imayev V, Gabdullin N (1993) Dynamic recrystallization in TiAl and Ti3Al intermetallic compounds. In: Materials Science Forum. Trans Tech Publ, pp 613-618

  4. Valiev RZ, Krasilnikov N, Tsenev N (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng A 137:35–40

    Article  Google Scholar 

  5. Segal V (1999) Equal channel angular extrusion: from macromechanics to structure formation. Mater Sci Eng A 271(1):322–333

    Article  Google Scholar 

  6. Segal V (1995) Materials processing by simple shear. Mater Sci Eng A 197(2):157–164

    Article  Google Scholar 

  7. Iwahashi Y, Horita Z, Nemoto M, Wang J, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater 35(2)

  8. Dumoulin S, Roven H, Werenskiold J, Valberg H (2005) Finite element modeling of equal channel angular pressing: effect of material properties, friction and die geometry. Mater Sci Eng A 410:248–251

    Article  Google Scholar 

  9. Djavanroodi F, Ebrahimi M (2010) Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater Sci Eng A 527(4):1230–1235

    Article  Google Scholar 

  10. Eivani A, Karimi Taheri A (2008) The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion. Comput Mater Sci 42(1):14–20

    Article  Google Scholar 

  11. Eivani A, Karimi Taheri A (2007) An upper bound solution of ECAE process with outer curved corner. J Mater Process Technol 182(1):555–563

    Article  Google Scholar 

  12. Kanála N (2009) New geometry of ECAP channel. Acta Metall Slovaca 15(4):228–233

    Google Scholar 

  13. Fridman HD, Levesque P (2004) Reduction of static friction by sonic vibrations. J Appl Phys 30(10):1572–1575

    Article  Google Scholar 

  14. Blaha F, Langenecker B (1955) Tensile deformation of zinc crystal under ultrasonic vibration. Naturwissenschaften 42:556

    Article  Google Scholar 

  15. Pohlman R, Lehfeldt E (1966) Influence of ultrasonic vibration on metallic friction. Ultrasonics 4(4):178–185

    Article  Google Scholar 

  16. Izumi O, Oyama K, Suzuki Y (1966) Effects of superimposed ultrasonic vibration on compressive deformation of metals. Jpn Inst Metals Trans 7(3):162–167

    Article  Google Scholar 

  17. Winsper C, Sansome D (1969) Study of the mechanics of wire drawing with a superimposed ultrasonic stress. In: Proc 10th MTDR Conf, Advan in Mach Tool Des and Res, Manchester, England. pp 553-565

  18. Young M, Winsper C, Sansome D (1970) The effect of tool attachment on the resonant characteristics of ultrasonic waveguides. Appl Acoust 3(3):217–224

    Article  Google Scholar 

  19. Pasierb A, Wojnar A (1992) An experimental investigation of deep drawing and drawing processes of thin-walled products with utilization of ultrasonic vibrations. J Mater Process Technol 34(1):489–494

    Article  Google Scholar 

  20. Cheers CF (1995) Design and optimisation of an ultrasonic die system for forming metal cans. Loughborough University

  21. Littmann W, Storck H, Wallaschek J (2001) Reduction of friction using piezoelectrically excited ultrasonic vibrations. In: SPIE's 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, California, United States of America. International Society for Optics and Photonics, pp 302-311

  22. Kumar V, Hutchings I (2004) Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol Int 37(10):833–840

    Article  Google Scholar 

  23. Bai Y, Yang M (2014) Influence of ultrasonic vibration on metal foils surface finishing with micro-forging. Procedia Engineering 81:1475–1480

    Article  Google Scholar 

  24. Langenecker B (1966) Effects of ultrasound on deformation characteristics of metals. IEEE Trans Sonics Ultrason 13(1):1–8

    Article  Google Scholar 

  25. Daud Y, Lucas M, Huang Z (2007) Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium. J Mater Process Technol 186(1):179–190

    Article  Google Scholar 

  26. Schinke B, Malmberg T (1987) Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature. Nucl Eng Des 100(3):281–296

    Article  Google Scholar 

  27. Lucas M, Gachagan A, Cardoni A (2009) Research applications and opportunities in power ultrasonics. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2949–2965

    Article  Google Scholar 

  28. Malygin G (2000) Acoustoplastic effect and the stress superimposition mechanism. Phys Solid State 42(1):72–78

    Article  Google Scholar 

  29. Hung J-C, Tsai Y-C, Hung C (2007) Frictional effect of ultrasonic-vibration on upsetting. Ultrasonics 46(3):277–284

    Article  Google Scholar 

  30. Mousavi S, Feizi H, Madoliat R (2007) Investigations on the effects of ultrasonic vibrations in the extrusion process. J Mater Process Technol 187:657–661

    Article  Google Scholar 

  31. Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51(5):606–616

    Article  Google Scholar 

  32. Hung J-C, Huang C-C (2012) Evaluation of friction in ultrasonic vibration-assisted press forging using double cup extrusion tests. Int J Precis Eng Manuf 13(12):2103–2108

    Article  Google Scholar 

  33. Hayashi M, Jin M, Thipprakmas S, Murakawa M, Hung J-C, Tsai Y-C, Hung C-H (2003) Simulation of ultrasonic-vibration drawing using the finite element method (FEM). J Mater Process Technol 140(1):30–35

    Article  Google Scholar 

  34. Murakawa M, Jin M (2001) The utility of radially and ultrasonically vibrated dies in the wire drawing process. J Mater Process Technol 113(1):81–86

    Article  Google Scholar 

  35. Suh C-M, Song G-H, Park H-D, Pyoun YS (2006) A study of the mechanical characteristics of ultrasonic cold forged SKD61. Int J Mod Phys B 20(25n27):4541–4546

    Article  Google Scholar 

  36. Suh C-M, Song G-H, Suh M-S, Pyoun Y-S (2007) Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology. Mater Sci Eng A 443(1):101–106

    Article  Google Scholar 

  37. Huang Y, Wu Y, Huang J (2014) The influence of ultrasonic vibration-assisted micro-deep drawing process. Int J Adv Manuf Technol 71(5–8):1455–1461

    Article  Google Scholar 

  38. Rasoli M, Abdullah A, Farzin M, Tehrani AF, Taherizadeh A (2012) Influence of ultrasonic vibrations on tube spinning process. J Mater Process Technol 212(6):1443–1452

    Article  Google Scholar 

  39. Hung J-C, Tsai Y-C (2013) Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass. Mater Sci Eng A 580:125–132

    Article  Google Scholar 

  40. Ahmadi F, Farzin M (2013) Finite element analysis of ultrasonic-assisted equal channel angular pressing. Proc Inst Mech Eng C J Mech Eng Sci 228(11):1859–1868. doi:10.1177/0954406213514961

    Article  Google Scholar 

  41. Djavanroodi F, Ahmadian H, Koohkan K, Naseri R (2013) Ultrasonic assisted-ECAP. Ultrasonics 53(6):1089–1096

    Article  Google Scholar 

  42. Rasooli M, Moshref-javadi M, Taherizadeh A (2014) Investigation of ultrasonic vibration effects on the microstructure and hardness of aluminum alloy 2024 tube spinning parts. The International J Adv Manuf Technol: 1-8. doi:10.1007/s00170-014-6500-5

  43. Liu Y, Suslov S, Han Q, Xu C, Hua L (2012) Microstructure of the pure copper produced by upsetting with ultrasonic vibration. Mater Lett 67(1):52–55

    Article  Google Scholar 

  44. Ting W, Dongpo W, Gang L, Baoming G, Ningxia S (2008) Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl Surf Sci 255(5):1824–1829

    Article  Google Scholar 

  45. Faraji G, Ebrahimi M, Bushroa A (2014) Ultrasonic assisted tubular channel angular pressing process. Mater Sci Eng A

  46. Liu Y, Suslov S, Han Q, Hua L, Xu C (2013) Comparison between ultrasonic vibration-assisted upsetting and conventional upsetting. Metall Mater Trans A 44(7):3232–3244

    Article  Google Scholar 

  47. Liu Y, Han Q, Hua L, Xu C (2013) Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip. Ultrasonics 53(3):803–807

    Article  Google Scholar 

  48. Peshkovsky SL, Peshkovsky AS (2007) Matching a transducer to water at cavitation: acoustic horn design principles. Ultrason Sonochem 14(3):314–322

    Article  Google Scholar 

  49. AMMM generator manual (2011) www.mastersonics.com/

  50. Ahmadi F, Farzin M (2014) Investigation of a new route for equal channel angular pressing process using three-dimensional finite element method. Proc Inst Mech Eng B J Eng Manuf 228(7):765–774. doi:10.1177/0954405413510309

    Article  Google Scholar 

  51. Suo T, Li Y, Deng Q, Liu Y (2007) Optimal pressing route for continued equal channel angular pressing by finite element analysis. Mater Sci Eng A 466(1):166–171

    Article  Google Scholar 

  52. Handbook A (2004) Metallography and microstructures. In: Vander Voort GF (ed) ASM Intenational 9

  53. Handbook ASM (1992) Vol. 3. Alloy phase diagrams 2:44

  54. Ensminger D, Stulen FB (2008) Ultrasonics: data, equations and their practical uses. CRC, Boca Raton

    Google Scholar 

  55. Lindsay RB (1960) Mechanical radiation. McGraw-Hill, New York

    Google Scholar 

  56. Westmacott K, Langenecker B (1965) Dislocation structure in ultrasonically irradiated aluminum. Phys Rev Lett 14(7):221

    Article  Google Scholar 

  57. Mahallawy NE, Shehata FA, Hameed MAE, Aal MIAE, Kim HS (2010) 3D FEM simulations for the homogeneity of plastic deformation in Al–Cu alloys during ECAP. Mater Sci Eng A 527(6):1404–1410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, F., Farzin, M., Meratian, M. et al. Improvement of ECAP process by imposing ultrasonic vibrations. Int J Adv Manuf Technol 79, 503–512 (2015). https://doi.org/10.1007/s00170-015-6848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6848-1

Keywords

Navigation