Skip to main content
Log in

Multi-criteria decision making techniques for compliant polishing tool selection

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Precision devices require surface finish of a few nanometers. The choice of compliant coated abrasive tools used in manufacturing such devices is discussed including a method for selecting a suitable one for a given component using decision-making techniques. Multiple conflicting criteria such as surface roughness and the polishing time influence the selection of appropriate compliant polishing tool. Hence, multi-criteria decision making methods (MCDMs) are implemented to rank the suitability of different polishing processes for a given workpiece geometry. New criteria such as compliance and surface integrity are introduced for such selection. In order to differentiate the level of complexity involved in these MCDMs, a traditional analytical hierarchy process (AHP) and a Fuzzy VIšekriterijumsko KOmpromisno Resenje (multi-criteria optimization and compromise solution, VIKOR) method are chosen. This study illustrates the capability of these two MCDMs as a polishing process selection tool using the linguistic information through a case study. From the decision makers’ inputs, rankings of polishing tools were obtained and compared using these two methods. New factors such as compliance are seen to affect the choice significantly. The approach discussed in this work could be used for developing an intelligent decision-making system for choosing polishing tools with respect to the given conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhao T, Shi Y, Lin X, Duan J, Sun P, Zhang J (2014) Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine. Int J Adv Manuf Technol 74:653–663. doi:10.1007/s00170-014-6020-3

    Article  Google Scholar 

  2. Tsai MJ, Huang JF (2006) Efficient automatic polishing process with a new compliant abrasive tool. Int J Adv Manuf Technol 30:817–827. doi:10.1007/s00170-005-0126-6

    Article  Google Scholar 

  3. Maher I, Eltaib MEH, Sarhan AD, El-Zahry RM (2014) Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in CNC end milling—ANFIS modeling. Int J Adv Manuf Technol 74(1–4):531–537. doi:10.1007/s00170-014-6016-z

    Article  Google Scholar 

  4. Jain NK, Jain VK, Jha S (2007) Parametric optimization of advanced fine-finishing processes. Int J Adv Manuf Technol 34(11–12):1191–1213. doi:10.1007/s00170-006-0682-4

    Article  Google Scholar 

  5. Marinescu ID, Uhlmann E, Doi TK (2007) Handbook of lapping and polishing. In: Ioan D. Marinescu, Eckart Uhlmann, Toshiro K. Doi (ed) Boca Raton, FL : CRC Press, c2007

  6. Zhong ZW (2008) Recent advances in polishing of advanced materials. Mater Manuf Process 23(5):449–456. doi:10.1080/10426910802103486

    Article  Google Scholar 

  7. Dieste JA, Fernández A, Roba D, Gonzalvo B, Lucas P (2013) Automatic grinding and polishing using spherical robot. Procedia Eng 63:938–946. doi:10.1016/j.proeng.2013.08.221

    Article  Google Scholar 

  8. Saito K (1984) Finishing and polishing of free form surfaces. B Jpn Soc Precis Eng 18(2):104–109

    Google Scholar 

  9. Huissoon JP, Ismail F, Jafari A, Bedi S (2002) Automated polishing of die steel surfaces. Int J Adv Manuf Technol 19(4):285–290. doi:10.1007/s001700200036

    Article  Google Scholar 

  10. Márquez JJ, Pérez JM, Riós J, Vizán A (2005) Process modeling for robotic polishing. J Mater Process Manuf Sci 159(1):69–82. doi:10.1016/j.jmatprotec.2004.01.045

    Google Scholar 

  11. Hojda M, Józefczyk J (2009) Decision making algorithm for a class of two-level manufacturing systems. Kybernetes 38(7/8):1359–1376. doi:10.1108/03684920910977023

    Article  MathSciNet  Google Scholar 

  12. Rao RV (2007) Decision making in the manufacturing environment : using graph theory and fuzzy multiple attribute decision making methods. Springer Series in Advanced Manufacturing, Springer-Verlag London Limited, London

    Google Scholar 

  13. Thirumalai R, Senthilkumaar JS (2013) Multi-criteria decision making in the selection of machining parameters for Inconel 718. J Mech Sci Technol 27(4):1109–1116. doi:10.1007/s12206-013-0215-7

    Article  Google Scholar 

  14. Singh V, Agrawal VP, Deb P (2010) A decision making method for selection of finish process for a cylindrical surface. Ind Eng Eng Manag (IEEM), IEEE Int Conf:38–42. doi:10.1109/IEEM.2010.5674417

  15. Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455. doi:10.1016/S0377-2217(03)00020-1

    Article  MATH  Google Scholar 

  16. Liu H-C, Mao L-X, Zhang Z-Y, Li P (2013) Induced aggregation operators in the VIKOR method and its application in material selection. Appl Math Model 37(9):6325–6338. doi:10.1016/j.apm.2013.01.026

    Article  MathSciNet  Google Scholar 

  17. Cho S-S, Ryu Y-K, Lee S-Y (2002) Curved surface finishing with flexible abrasive tool. Int J Mach Tools Manuf 42(2):229–236. doi:10.1016/S0890-6955(01)00106-7

    Article  Google Scholar 

  18. Umer M, Saptaji K, Subbiah S (2012) Study of pressure distribution in compliant coated abrasive tools for robotic polishing. In: Proceedings of the ASME International Manufacturing Science and Engineering, ASME 2012, Notre Dame, Indiana, USA, 855–860

  19. Balasubramanian N, Jian CW, Sathyan S (2011) Modeling effects of compliance in coated abrasive tools. In: Tawakoli T (ed) Advances in Abrasive Technology XIV, Adv Mater Res 325: 257–263. doi:10.4028/www.scientific.net/AMR.325.257

  20. Axinte DA, Kritmanorot M, Axinte M, Gindy NNZ (2005) Investigations on belt polishing of heat-resistant titanium alloys. J Mater Process Technol 166(3):398–404. doi:10.1016/j.jmatprotec.2004.08.030

    Article  Google Scholar 

  21. Slatineanu L, Coteata M, Dodun O, Iosub A, Sirbu V (2010) Some considerations regarding finishing by abrasive flap wheels. Int J Mater Form 3(2):123–134. doi:10.1007/s12289-009-0665-8

    Article  Google Scholar 

  22. Jin M, Ji S, Zhang C, Ao H, Zhang L (2012) Simulation and experiment research of magnetic gasbag polishing. IEEE Asia-Pacific Conference on Applied Electromagnetics:28–31.doi: 10.1109/APACE.2012.6457625

  23. Ji SM, Zhang L, Jin MS, Yuan QL, Shen YQ (2009) Dynamic numerical simulation of mould free-form curved surface gasbag polishing. Adv Mater Res 69:6–10

    Article  Google Scholar 

  24. Ji S, Zhang W, Jin M, Zhang L, Zheng G (2010) A new method of pulse technique in gasbag polishing. Key Eng Mater 431:293–296. doi:10.4028/www.scientific.net/KEM. 431-432.293

    Article  Google Scholar 

  25. Ji S, Chen G, Jin M, Zhang L (2010) Modeling and experimental study of magnetorheological flexible gasbag polishing. In: Chai GZ, Lu CD, Wen DH (eds) Digital Design and Manufacturing Technology, Pts 1 and 2, vol 102–104. Adv Mater Res:634–638. doi:10.4028/www.scientific.net/AMR.102-104.634

  26. Ji S, Chen G, Ji M, Zhang L, Yuan Q, Zhang X (2010) Application of magnetic abrasive in gasbag polishing. Adv Mater Res 102:690–694. doi:10.4028/www.scientific.net/AMR. 102-104.690

    Article  Google Scholar 

  27. Li Y, Tan D, Wen D, Ji S, Cai D (2013) Parameters optimization of a novel 5-DOF gasbag polishing machine tool. Chin J Mech Eng 26(4):680–688. doi:10.3901/cjme.2013.04.680

    Article  Google Scholar 

  28. Zhan J (2013) An improved polishing method by force controlling and its application in aspheric surfaces ballonet polishing. Int J Adv Manuf Technol 68(9–12):2253–2260. doi:10.1007/s00170-013-4814-3

    Article  Google Scholar 

  29. Armillotta A (2008) Selection of layered manufacturing techniques by an adaptive AHP decision model. Robot Cim Integr Manuf 24(3):450–461. doi:10.1016/j.rcim.2007.06.001

    Article  Google Scholar 

  30. Sun J, Ge P, Liu Z (2001) Two-grade fuzzy synthetic decision-making system with use of an analytic hierarchy process for performance evaluation of grinding fluids. Tribol Int 34(10):683–688. doi:10.1016/S0301-679X(00)00152-3

    Article  Google Scholar 

  31. Ayag Z, Özdemir RG (2006) A fuzzy AHP approach to evaluating machine tool alternatives. J Intell Manuf 17(2):179–190. doi:10.1007/s10845-005-6635-1

    Article  Google Scholar 

  32. Saaty T (1988) What is the analytic hierarchy process? In: Mitra G, Greenberg H, Lootsma F, Rijkaert M, Zimmermann H (eds) Mathematical Models for Decision Support, NATO ASI Series. Springer Berlin Heidelberg, 8: 109–121. doi:10.1007/978-3-642-83555-1_5

  33. Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91. doi:10.1016/S0377-2217(02)00227-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaya T, Kahraman C (2010) Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul. Energy 35(6):2517–2527

    Article  MathSciNet  Google Scholar 

  35. Tuzkaya G, Gülsün B, Kahraman C, Ozgen D (2010) An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. Expert Syst Appl 37(4):2853–2863. doi:10.1016/j.eswa.2009.09.004

    Article  Google Scholar 

  36. 3M (2014) Abrasives Product Catalog, Abrasive Discs. http://solutions.3m.com/wps/portal/3M/en_US/3MIndustrial/Abrasives/ (Last accessed on December 2014).

  37. Klocke F, Dambon O, Schneider U, Zunke R, Waechter D (2009) Computer-based monitoring of the polishing processes using LabView. J Mater Process Technol 209(20):6039–6047. doi:10.1016/j.jmatprotec.2009.08.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Idapalapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunachalam, A.P.S., Idapalapati, S. & Subbiah, S. Multi-criteria decision making techniques for compliant polishing tool selection. Int J Adv Manuf Technol 79, 519–530 (2015). https://doi.org/10.1007/s00170-015-6822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6822-y

Keywords

Navigation