Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology

  • Vivek AggarwalEmail author
  • Sehijpal Singh Khangura
  • R. K. Garg


Inconel 718 is a high-nickel-content superalloy which possesses excellent strength at elevated temperatures and resistance to oxidation and corrosion. This alloy has wide applications in the manufacturing of aircraft engine parts such as turbine disks, blades, combustors and casings, extrusion dies and containers, and hot work tools and dies, but the inherent problems in machining of superalloys with conventional techniques necessitate the use of alternative machining processes. The wire electrical discharge machining (WEDM) process has been recently explored as a good alternative of conventional machining methods, but there is lack of data and suitable models for predicting the performance of WEDM process particularly for Inconel 718. In the present work, empirical modeling of process parameters of the WEDM has been carried out for Inconel 718 using a well-known experimental design approach called response surface methodology. The parameters such as pulse-on time, pulse-off time, peak current, spark gap voltage, wire feed rate, and wire tension have been selected as input variables keeping others constant. The performance has been measured in terms of cutting rate and surface roughness. The models developed are found to be reliable representatives of the experimental results with prediction errors less than ±5 %. The optimized values of cutting rate and surface roughness achieved through multi-response optimization are 2.55 mm/min and 2.54 μm, respectively.


Wire electrical discharge machining Inconel 718 Response surface methodology Cutting rate Surface roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang ZY, Rajurkar KP, Fan J, Lei S, Shin YC, Petrescu G (2003) Hybrid machining of Inconel 718. Int J Mach Tool Manuf 43:1391–1396CrossRefGoogle Scholar
  2. 2.
    Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Des 30:1718–1725CrossRefGoogle Scholar
  3. 3.
    Sharman ARC, Hughes JI, Ridgway K (2006) An analysis of the residual stresses generated in Inconel 718TM when turning. J Mater Process Technol 173:359–367CrossRefGoogle Scholar
  4. 4.
    Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177:469–472CrossRefGoogle Scholar
  5. 5.
    Shaw MC, Nakayama K (1967) Machining high strength materials. CIRP Ann 15:45–59Google Scholar
  6. 6.
    Kinoshita N, Fukui M, Gamo G (1982) Control of wire-EDM preventing electrode from breaking. CIRP Ann Manuf Technol 31:111–114CrossRefGoogle Scholar
  7. 7.
    Benedict GF (1987) Electrical discharge wire cutting (EDWC). In: Nontraditional manufacturing processes. Marcel Dekker, New York, pp 231–246Google Scholar
  8. 8.
    Kalpakjian S, Schmid SR (2008) Material-removal processes: abrasive, chemical, electrical, and high-energy beams. In: Manufacturing processes for engineering materials, 5th edn. Pearson Education, pp 561–565Google Scholar
  9. 9.
    Pandey PC, Shan HS (2010) Thermal metal removal processes. In: Modern machining processes. Tata McGraw-Hill Education, pp 84–113Google Scholar
  10. 10.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tool Manuf 44:1247–1259CrossRefGoogle Scholar
  11. 11.
    Scott D, Boyina S, Rajurkar KP (1991) Analysis and optimization of parameter combinations in wire electrical discharge machining. Int J Prod Res 29:2189–2207CrossRefzbMATHGoogle Scholar
  12. 12.
    Williams RE, Rajurkar KP (1991) Study of wire electrical discharge machined surface characteristics. J Mater Process Technol 28:127–138CrossRefGoogle Scholar
  13. 13.
    Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tool Manuf 35:1693–1701CrossRefGoogle Scholar
  14. 14.
    Spedding TA, Wang ZQ (1997) Parametric optimization and surface characterization of wire electrical discharge machining process. Precis Eng 20:5–15CrossRefGoogle Scholar
  15. 15.
    Spedding TA, Wang ZQ (1997) Study on modeling of wire EDM process. J Mater Process Technol 69:18–28CrossRefGoogle Scholar
  16. 16.
    Huang JT, Liao YS, Hsue WJ (1999) Determination of finish-cutting operation number and machining-parameters setting in wire electrical discharge machining. J Mater Process Technol 87:69–81CrossRefGoogle Scholar
  17. 17.
    Tosun N, Cogun C, Tosun G (2004) A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. J Mater Process Technol 152:316–322CrossRefGoogle Scholar
  18. 18.
    Han F, Jiang J, Yu D (2007) Influence of machining parameters on surface roughness in finish cut of WEDM. Int J Adv Manuf Technol 34:538–546CrossRefGoogle Scholar
  19. 19.
    Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34:911–925CrossRefGoogle Scholar
  20. 20.
    Kondayya D, Krishna AG (2011) An integrated evolutionary approach for modelling and optimization of wire electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf 225:549–567CrossRefGoogle Scholar
  21. 21.
    Kuruvila N, Ravindra HV (2011) Parametric influence and optimization of wire EDM of hot die steel. Int J Mach Sci Technol 15:47–75CrossRefGoogle Scholar
  22. 22.
    Sadeghi M, Razavi H, Esmaeilzadeh A, Kolahan F (2011) Optimization of cutting conditions in WEDM process using regression modelling and Tabu-search algorithm. Proc Inst Mech Eng B J Eng Manuf 225:1825–1834CrossRefGoogle Scholar
  23. 23.
    Kumar K, Agarwal S (2012) Multi-objective parametric optimization on machining with wire electric discharge machining. Int J Adv Manuf Technol 62:617–633CrossRefGoogle Scholar
  24. 24.
    Sharma N, Khanna R, Gupta RD, Sharma R (2013) Modeling and multiresponse optimization on WEDM for HSLA by RSM. Int J Adv Manuf Technol 67:2269–2281CrossRefGoogle Scholar
  25. 25.
    Kuriakose S, Mohan K, Shunmugam MS (2003) Data mining applied to wire-EDM process. J Mater Process Technol 142:182–189CrossRefGoogle Scholar
  26. 26.
    Sarkar S, Mitra S, Bhattacharyya B (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159:286–294CrossRefGoogle Scholar
  27. 27.
    Chen HC, Lin JC, Yang YK, Tsai CH (2010) Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Syst Appl 37:7147–7153CrossRefGoogle Scholar
  28. 28.
    Yu PH, Lee HK, Lin YX, Qin SJ, Yan BH, Huang FY (2011) Machining characteristics of polycrystalline silicon by wire electrical discharge machining. Mater Manuf Process 26:1443–1450CrossRefGoogle Scholar
  29. 29.
    Chiang KT, Chang FP (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180:96–101CrossRefGoogle Scholar
  30. 30.
    Manna A, Bhattacharyya B (2006) Taguchi and Gauss elimination method: a dual response approach for parametric optimization of CNC wire cut EDM of PRAISiCMMC. Int J Adv Manuf Technol 28:67–75CrossRefGoogle Scholar
  31. 31.
    Patil NG, Brahmankar PK (2010) Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix composites. Int J Adv Manuf Technol 48:537–555CrossRefGoogle Scholar
  32. 32.
    Hewidy MS, El-Taweel TA, El-Safty MF (2005) Modeling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169:328–336CrossRefGoogle Scholar
  33. 33.
    Ramakrishnan R, Karunamoorthy L (2008) Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J Mater Process Technol 207:343–349CrossRefGoogle Scholar
  34. 34.
    Ramakrishnan R, Karunamoorthy L (2009) Performance studies of wire electro discharge machining (WEDM) of Inconel 718. Int J Mater Prod Technol 35:199–215CrossRefGoogle Scholar
  35. 35.
    Garg RK, Aggarwal V, Singh S (2014) Effect of wire materials on cutting performance of WEDM for machining of Inconel superalloy. Appl Mech Mater 624:124–128CrossRefGoogle Scholar
  36. 36.
    Box GE, Wilson KB (1951) On the experimental attainment of optimum conditions. J Roy Stat Soc Ser B 13:1–45MathSciNetzbMATHGoogle Scholar
  37. 37.
    Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New YorkGoogle Scholar
  38. 38.
    Box GE, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 28:195–241CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Anderson MJ, Whitcomb PJ (2005) RSM simplified: optimizing processes using response surface methods for design of experiments. Productivity Press, New YorkGoogle Scholar
  40. 40.
    Bhushan RK (2012) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242–254CrossRefGoogle Scholar
  41. 41.
    Kuehl RO (2000) Design of experiments: statistical principles of research design and analysis, 2nd edn. Duxbury/Thomson Learning, Pacific GroveGoogle Scholar
  42. 42.
    Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New YorkGoogle Scholar
  43. 43.
    Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219Google Scholar
  44. 44.
    Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38:74–84CrossRefGoogle Scholar
  45. 45.
    Sachdeva A, Singh S, Sharma VS (2013) Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol 64:1505–1516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Vivek Aggarwal
    • 1
    Email author
  • Sehijpal Singh Khangura
    • 2
  • R. K. Garg
    • 1
  1. 1.Department of Industrial and Production EngineeringDr B R Ambedkar National Institute of TechnologyJalandharIndia
  2. 2.Department of Mechanical EngineeringGuru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations