Skip to main content
Log in

Three-dimensional numerical simulation of microelectric discharge machining of Ti-6Al-4V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The aim of the present work is to develop a predictive thermal model based on heat transfer principle for the simulation of single-spark microelectric discharge machining (μ-EDM). The three-dimensional model is solved using finite volume method (FVM). It utilizes the Gaussian distribution of heat flux, percentage distribution of energy among the workpiece, tool electrode, and dielectric to perform transient thermal analysis to predict the crater geometry and temperature distribution in the workpiece at different voltages and capacitance values along the x, y, and z directions. The experiments were performed for single-spark discharge using a resistor-capacitor (RC) circuit with titanium alloy (Ti-6Al-4V) as workpiece material and tungsten carbide as tool electrode. The experimental crater dimensions were measured by using a scanning electron microscope (SEM). The model is validated by comparing the predicted temperature distribution with the published results and also with experimental results. Results show that the trends predicted by the model are logical and match fairly well with the experimental trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jahan MP, Rahman M, Wong YS (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tools Manuf 51(12):837–858

    Article  Google Scholar 

  2. Jilani ST, Pandey PC (1982) Analysis and modeling of EDM parameters. Precis Eng 4:215–221

    Article  Google Scholar 

  3. Dibitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical model of the electric discharge machining process. I. The cathode erosion model. J Appl Phys 66:4095–4103

    Article  Google Scholar 

  4. Patel MR, Barrufet MA, Eubank PT, Dibitonto DD (1989) Theoretical model of the electric discharge machining process. II. The anode erosion model. J Appl Phys 66:4104–4111

    Article  Google Scholar 

  5. Shankar P, Jain VK, Sundararajan T (1997) Analysis of spark profiles during EDM process. Mach Sci Technol 1:195–217

    Article  Google Scholar 

  6. Singh A, Ghosh A (1999) A thermo electric model of material removing during electric discharge machining. Int J Mach Tools Manuf 39:669–682

    Article  Google Scholar 

  7. Yu ZY, Kozak J, Rajurkar KP (2003) Modeling and simulation of micro EDM process. CIRP Ann 52:143–146

    Article  Google Scholar 

  8. Marafona J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602

    Article  Google Scholar 

  9. Joshi SN, Pande SS (2009) Development of an intelligent process model for EDM. Int J Adv Manuf Technol 45:300–317

    Article  Google Scholar 

  10. Joshi SN, Pande SS (2010) Thermo physical modeling of die sinking EDM process. J Manuf Process 12:45–56

    Article  Google Scholar 

  11. Izquierdo B, Sanchez JA, Plaza S, Pombo I, Ortega N (2009) A numerical model of the EDM process considering the effect of multiple discharges. Int J Mach Tools Manuf 49:220–229

    Article  Google Scholar 

  12. Xie BC, Wang YK, Wang ZL, Zhao WS (2011) Numerical simulation of titanium alloy machining in electric discharge machining process. Trans Nonferrous Metals Soc China 21:434–439

    Article  Google Scholar 

  13. Shabgard M, Ahmadi R, Seyedzavvar M, Oliaei SNB (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tools Manuf 65:79–87

    Article  Google Scholar 

  14. Izquierdo B, Plaza S, Sanchez JA, Pombo I, Ortega N (2012) Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Appl Surf Sci 259:780–790

    Article  Google Scholar 

  15. Zhang Y, Liu Y, Shen Y, Li Z, Ji R, Cai B (2014) A novel method of determining energy distribution and plasma diameter of EDM. Int J Heat Mass Transfer 75:425–432

    Article  Google Scholar 

  16. Yeo SH, Kurnia W, Tan PC (2008) Critical assessment and numerical comparison of electro thermal models in EDM. J Mater Process Technol 203:241–251

    Article  Google Scholar 

  17. Snoeys R, Van Dijick FS (1971) Investigation of electro discharge machining operations by means of thermo mathematical model. CIRP Ann 20:35–37

    Google Scholar 

  18. Van Dijick FS, Dutre WL (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Phys D Appl Phys 7:899–910

    Article  Google Scholar 

  19. Beck JV (1981) Transient temperatures in a semi-infinite cylinder heated by a disk heat source. Int J Heat Mass Transfer 24:1631–1640

    Article  MATH  Google Scholar 

  20. Jilani ST, Pandey PC (1983) Analysis of surface erosion in electrical discharge machining. Wear 84(275):284

    Google Scholar 

  21. Dhanik S, Joshi SS, Ramakrishnan N, Apte PR (2005) Evolution of EDM process modeling and development towards modeling of the micro EDM process. Int J Manuf Technol Manag 7:157–180

    Google Scholar 

  22. Dhanik S, Joshi SS (2005) Modeling of a single resistance capacitance pulse discharge in micro electro discharge machining. J Manuf Sci Eng 127:759–767

    Article  Google Scholar 

  23. Yu ZY, Kozak J, Rajurkar KP (2003) Modeling and simulation of micro EDM process. CIRP Ann Manuf Technol 52:143–146

    Article  Google Scholar 

  24. Murali MS, Yeo SH (2005) Process simulation and residual stress estimation of micro electric discharge machining using finite element method. J Appl Phys 44(7):5254–5263

    Article  Google Scholar 

  25. Yeo SH, Kurnia W, Tan PC (2007) Electro thermal modeling of anode and cathode in micro EDM. J Phys D Appl Phys 40(8):2513

    Article  Google Scholar 

  26. Kiran KMP, Joshi SS (2007) Modeling of surface roughness and the role of debris in micro-EDM. J Manuf Sci Eng 129(2):265–273

    Article  Google Scholar 

  27. Allen P, Chen X (2007) Process simulation of micro electrodischarge machining on molybdenum. J Mater Process Technol 186:346–355

    Article  Google Scholar 

  28. Mathew J, Allesu K, Srisailam S, Somashekar KP, Prakash Naidu P, Suvin PS (2012) Estimation of residual stress and crater shape in μ-EDM by finite element method. Proceedings of 7th ASME Int conf, Texas, USA

  29. Somashekhar KP, Mathew J, Ramachandran N (2012) Electrothermal theory approach for numerical approximation of the μ-EDM process. Int J Adv Manuf Technol 61:1241–1246

    Article  Google Scholar 

  30. Somashekhar KP, Panda S, Mathew J, Ramachandran N (2013) Numerical simulation of micro-EDM model with multi-spark. Int J Adv Manuf Technol. doi:10.1007/s00170-013-5319-9

    Google Scholar 

  31. Ghosh A, Mallik AK (1986) Manufacturing science. Ellis Horwood

  32. Yadav V, Jain VK, Dixit PM (2002) Thermal stress due to electrical discharge machining. Int J Mech Tools Manuf 42:877–888

    Article  Google Scholar 

  33. Zahiruddin M, Kunieda M (2012) Comparison of energy and removal efficiencies between micro and macro EDM. CIRP Ann Manuf Technol 61:87–90

    Article  Google Scholar 

  34. Somashekar KP (2010) Theoretical and experimental investigations on micro electric discharge machining processes. PhD Thesis, National institute of Technology, Kerala, India

  35. Rajurkar K (2006) Micro and nano machining by electro-physical and chemical processes. CIRP Ann Manuf Technol 55(2):643–666

    Article  Google Scholar 

  36. Guu Y, Hocheng H (2001) Effects of workpiece rotation on machinability during electrical-discharge machining. Mater Manuf Process 16(1):91–101

    Article  Google Scholar 

  37. Huang H (2003) Ultrasonic vibration assisted electro-discharge machining of micromoles in Nitinol. J Micromech Microeng 13(5):693

    Article  Google Scholar 

  38. Yeo S, Murali M, Cheah H (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14(11):1526–1531

    Article  Google Scholar 

  39. Murali MS, Yeo S (2004) A novel spark erosion technique for the fabrication of high aspect ratio micro grooves. Microsyst Technol 10(8–9):628–632

    Article  Google Scholar 

  40. Versteeg HK, Malalasekara W (1995) An introduction to computational fluid dynamics, the finite volume method. Pearson Education Limited, Harlow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kuriachen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriachen, B., Varghese, A., Somashekhar, K.P. et al. Three-dimensional numerical simulation of microelectric discharge machining of Ti-6Al-4V. Int J Adv Manuf Technol 79, 147–160 (2015). https://doi.org/10.1007/s00170-015-6794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6794-y

Keywords

Navigation