Skip to main content
Log in

Finite element modeling of hard turning process via a micro-textured tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Literature survey showed that the micro-textures on the tool rake face can help in reduction in friction at chip-tool interface and therefore, reduction in the cutting forces. Consequently, the current work is based on FE simulation of hard turning of bearing steel (AISI52100). Four types of micro-textures have been considered on the tool rake face: non-texture, perpendicular, parallel, and rectangle. Johnson-Cook (J-C) material constitutive law has been considered for the workpiece with temperature-dependent material properties. Experimental work has been performed at cutting conditions: type, parallel; edge distance, 0.195 mm; pitch size, 0.110 mm; and height of the texture, 0.049 mm to validate the current machining model. Parametric study of effect of tool feature parameters on the cutting forces has been performed. Based on the current model, it is observed that the perpendicular shape showed the minimum cutting force. The maximum reduction of 28 % was predicted in the effective coefficient of friction compared to the non-textured surface. Additionally, effect of size of the texture (edge distance, pitch size, texture height) and the friction factor at tool-chip interface on the process responses is predicted. The perpendicular texture at an edge distance of 100 μm, pitch size of 100 μm, and texture height of 50 μm showed the most effective shape and size for the minimum cutting forces and effective friction. It is simulated that the chip flow angle can be governed by the shape/size of the texture on the tool rake face. It is expected that the current model can further be helpful in the characterization of other hard materials and complex texture shape/size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y, Chou YK, Liang S (2007) CBN tool wear in hard turning: a survey on research progresses. Int J Adv Manuf Technol 35(5–6):443–453. doi:10.1007/s00170-006-0737-6

    Article  Google Scholar 

  2. Konig W, Berktold A, Koch KF (1984) Machining of hard materials, vol 2. CIRP, Annals of

    Google Scholar 

  3. Zhang J (2005) Process Optimization for Machining of hardend Steels. Ph. D. Thesis, Georgia Institute of Technology

  4. Dawson TG (2002) Machining hardened steel with polycrystalline cubic boron nitride cutting tools. Ph.D. Thesis, Georgia Institute of Technology,

  5. Al-Zkeri IA (2007) Finite element modeling of hard turning. Ph. D. Thesis, Ohio State University

  6. Ramesh A, Melkote SN, Allard LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng A 390(1–2):88–97. doi:10.1016/j.msea.2004.08.052

    Article  Google Scholar 

  7. Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57(2):750–769. doi:10.1016/j.cirp.2008.09.003

    Article  Google Scholar 

  8. Evans CJ, Bryan JB (1999) “Structured”, “Textured” or “Engineered” surfaces. CIRP Ann Manuf Technol 48(2):541–556. doi:10.1016/s0007-8506(07)63233-8

    Article  Google Scholar 

  9. Kawasegi N, Sugimori H, Morimoto H, Morita N, Hori I (2009) Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis Eng 33(3):248–254. doi:10.1016/j.precisioneng.2008.07.005

    Article  Google Scholar 

  10. Lian Y, Deng J, Yan G, Cheng H, Zhao J (2013) Preparation of tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool and its cutting performance. Int J Adv Manuf Technol 68(9–12):2033–2042. doi:10.1007/s00170-013-4827-y

    Article  Google Scholar 

  11. Pettersson U, Jacobson S (2006) Tribological texturing of steel surfaces with a novel diamond embossing tool technique. Tribol Int 39(7):695–700. doi:10.1016/j.triboint.2005.06.004

    Article  Google Scholar 

  12. Dubrujeaud B, Vardavoulias M, Jeandin M (1994) The role of porosity in the dry sliding wear of a sintered ferrous alloy. Wear 174(1–2):155–161. doi:10.1016/0043-1648(94)90097-3

    Article  Google Scholar 

  13. Blatter A, Maillat M, Pimenov SM, Shafeev GA, Simakin AV, Loubnin EN (1999) Lubricated sliding performance of laser-patterned sapphire. Wear 232(2):226–230. doi:10.1016/S0043-1648(99)00150-7

    Article  Google Scholar 

  14. Costa H, Hutchings I (2009) Effects of die surface patterning on lubrication in strip drawing. J Mater Process Technol 209(3):1175–1180

    Article  Google Scholar 

  15. Erdemir A (2005) Review of engineered tribological interfaces for improved boundary lubrication. Tribol Int 38(3):249–256. doi:10.1016/j.triboint.2004.08.008

    Article  Google Scholar 

  16. Xie J, Luo MJ, Wu KK, Yang LF, Li DH (2013) Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int J Mach Tools Manuf 73:25–36. doi:10.1016/j.ijmachtools.2013.05.006

    Article  Google Scholar 

  17. Tatsumi T, Takeda J, Imai K, Hashimoto H (1999) An engineered tool and some results of fly-cut experiments. Precision Engineering, Nanotechnology, Vol 1, Proceedings. Shaker Verlag Gmbh, Aachen

  18. Hintze W. EA, and Wurfels K. (1998) Tool for material removal machining. US Patent

  19. Jianxin D, Ze W, Yunsong L, Ting Q, Jie C (2012) Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. Int J Refract Met Hard Mater 30(1):164–172. doi:10.1016/j.ijrmhm.2011.08.002

    Article  Google Scholar 

  20. Johnson GR, Cook WH A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics (1983) The Hague. International Ballistics Committee, Netherlands, pp 541–547

    Google Scholar 

  21. Tang L, Huang J, Xie L (2011) Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool. Int J Adv Manuf Technol 53(9–12):1167–1181. doi:10.1007/s00170-010-2901-2

    Article  Google Scholar 

  22. Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51(12):966–972. doi:10.1016/j.ijmachtools.2011.08.013

    Article  Google Scholar 

  23. Huang Y, Liang S (2003) Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int J Mach Tools Manuf 43(3):307–315

    Article  Google Scholar 

  24. Guo Y, Liu C (2002) 3D FEA modeling of hard turning. J Manuf Sci Eng 124(2):189–199

    Article  Google Scholar 

  25. Umbrello D, Hua J, Shivpuri R (2004) Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater Sci Eng A 374(1):90–100

    Article  Google Scholar 

  26. Ng EG, Aspinwall DK, Brazil D, Monaghan J (1999) Modelling of temperature and forces when orthogonally machining hardened steel. Int J Mach Tools Manuf 39(6):885–903. doi:10.1016/s0890-6955(98)00077-7

    Article  Google Scholar 

  27. Heath P (1987) Properties and uses of Amborite. Carbide Tool J 19(2):12–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Wook Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.M., Bajpai, V., Kim, B.H. et al. Finite element modeling of hard turning process via a micro-textured tool. Int J Adv Manuf Technol 78, 1393–1405 (2015). https://doi.org/10.1007/s00170-014-6747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6747-x

Keywords

Navigation