Skip to main content
Log in

Improvement of toolpath quality combining polynomial interpolation with reduction of toolpath points

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The aim of this study is to propose a five-axis toolpath smoothing method in order to improve the quality of machined surfaces. Currently, toolpaths are commonly computed from CAD models presenting small geometrical discontinuities. These discontinuities may be caused by an insufficient quality of the CAD model (geometrical discontinuities) and the use of meshed surfaces (e.g., stereolithography (STL) files). Normally, CAM systems generate linearly interpolated toolpaths. CNC options are then used on the machine to smooth the toolpath. The geometrical discontinuities of CAD models and linear toolpath interpolation may induce an unsmooth toolpath. This type of toolpath causes marks on the machined workpiece even if classical enhanced CNC options are used. Generally, these marks are unacceptable for the functionality of the workpiece. To reduce this problem, this study proposes a method to efficiently smooth toolpaths and consequently improve the obtained surface quality. The proposed method may be employed with high-end controllers commonly used on five-axis CNC machines. First, a five-degree polynomial interpolation method is presented. This interpolation is computed to ensure geometrical continuity in the slope and curvature of the obtained toolpath. Next, a concatenation method is proposed to reduce the size of the CNC program and to improve the toolpath smoothness. Moreover, the purpose of this concatenation is to obtain an optimized repartition of points along the toolpath. Furthermore, in a reverse engineering process, this method avoids surface reconstruction, decreasing the process time and improving the quality of the obtained surface. The efficiency of these methods is validated by the machining of biomedical prostheses. The CAD model used for the test is a meshed surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim SP, Haroun H (2012) Surface reconstruction techniques: a review. Artif Intell Rev. doi:10.1007/s10462-012-9329-z

    Google Scholar 

  2. Park SC, Chung YC (2000) Tool-path generation from measured data. Comput Aided Des 35:467–475. doi:10.1016/S0010-4485(02)00070-2

    Article  Google Scholar 

  3. Zhang Y, Ge L (2011) Adaptive tool-path generation on point-sampled surfaces. Precis Eng-J Int Soc 35:591–601. doi:10.1016/j.precisioneng.2011.04.002

    Article  Google Scholar 

  4. Feng HY, Teng ZJ (2005) Iso-planar piecewise linear NC tool path generation from discrete measured data points. Comput Des 37:55–64. doi:10.1016/j.cad.2004.04.001

    Google Scholar 

  5. Chui KL, Chiu WK, Yu KM (2008) Direct 5-axis tool-path generation from point cloud input using 3D biarc fitting. Robot Comput Integr 24:270–286. doi:10.1016/j.rcim.2006.11.004

    Article  Google Scholar 

  6. Sun YW, Guo DM, Jia ZY et al (2006) Iso-parametric tool path generation from triangular meshes for free-form surface machining. Int J Adv Manuf 28:721–726. doi:10.1007/s00170-004-2437-4

    Article  Google Scholar 

  7. Park SC (2004) Sculptured surface machining using triangular mesh slicing. Comput Aided Des 36:279–288. doi:10.1016/S0010-4485(03)00114-3

    Article  Google Scholar 

  8. Jun CS, Kim DS, Park SC (2002) A new curve-based approach to polyhedral machining. Comput Aided Des 34:379–389. doi:10.1016/S0010-4485(01)00110-5

    Article  Google Scholar 

  9. Kim SJ, Yang MY (2006) A CL surface deformation approach for constant scallop height tool path generation from triangular mesh. Int J Adv Manuf Technol 28:314–320. doi:10.1007/s00170-004-2372-4

    Article  Google Scholar 

  10. Lauwers B, Kiswanto G, Kruth JP (2003) Development of a five-axis milling tool path generation algorithm based on faceted models. CIRP Ann Manuf Technol 52(1):85–88. doi:10.1016/S0007-8506(07)60537-X

    Article  Google Scholar 

  11. Lu J, Cheatham R, Jensen CG, Chen Y, Bowman B (2008) A three-dimensional configuration-space method for 5-axis tessellated surface machining. Int J Comput Integr Manuf 21(5):550–568. doi:10.1080/09511920701263313

    Article  Google Scholar 

  12. Kiswanto G, Lauwers B, Kruth JP (2007) Gouging elimination through tool lifting in tool path generation for five-axis milling based on faceted models. Int J Adv Manuf Technol 32(3–4):293–309. doi:10.1007/s00170-005-0338-9

    Article  Google Scholar 

  13. Lasemi A, Xue D, Gu P (2010) Recent development in NC machining of freeform surfaces: a state-of-the-art review. Comput Aided Des 42:641–651. doi:10.1016/j.cad.2010.04.002

    Article  Google Scholar 

  14. Chaves-Jacob J, Linares JM, Sprauel JM (2011) Increasing of surface quality in friction free-form surfaces of knee prosthesis. CIRP Ann Manuf Tech 60:531–534. doi:10.1016/j.cirp.2011.03.059

    Article  Google Scholar 

  15. Langeron JM, Duc E, Lartigue C, Bourdet P (2004) A new format for 5-axis tool path computation, using Bspline curves. Comput Aided Des 36:1219–1229. doi:10.1016/j.cad.2003.12.002

    Article  Google Scholar 

  16. Lartigue C, Tournier C, Ritou M, Dumur D (2004) High-performance NC for HSM by means of polynomial trajectories. CIRP Ann Manuf Tech 53:317–320. doi:10.1016/S0007-8506(07)60706-9

    Article  Google Scholar 

  17. Yong TH, Narayanaswami R (2003) A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Comput Aided Des 35:1249–1259. doi:10.1016/S0010-4485(03)00043-5

    Article  Google Scholar 

  18. Lavernhe S, Tournier C, Lartigue C (2008) Kinematical performance prediction in multi-axis machining for process planning optimization. Inte J Manuf Technol 37:534–544. doi:10.1007/s00170-007-1001-4

    Article  Google Scholar 

  19. Vickers GW, Quan KW (1989) Ball-mills versus end-mills for curved surface machining. J Eng Ind Trans ASME 111(1):22–26. doi:10.1115/1.3188728

    Article  Google Scholar 

  20. Huang YC, Oliver JH (1994) Non-constant parameter NC tool path generation on sculptured surfaces. Int J Adv Manuf Technol 9(5):281–290. doi:10.1007/BF01781282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Chaves-Jacob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchenitfa, H., Chaves-Jacob, J., Linares, JM. et al. Improvement of toolpath quality combining polynomial interpolation with reduction of toolpath points. Int J Adv Manuf Technol 78, 875–883 (2015). https://doi.org/10.1007/s00170-014-6696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6696-4

Keywords

Navigation