Skip to main content

Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam


This paper investigates in hatching process strategies for additive manufacturing using an electron beam by numerical simulations. The underlying physical model and the corresponding three-dimensional thermal free-surface lattice Boltzmann method of the simulation software are briefly presented. The simulation software has already been validated on the basis of experiments up to 1.2kW beam power by hatching a cuboid with a basic process strategy, whereby the results are classified into porous, good, and uneven, depending on their relative density and top surface smoothness. In this paper, we study the limitations of this basic process strategy in terms of higher beam powers and scan velocities to exploit the future potential of high power electron beam guns up to 10kW. Subsequently, we introduce modified process strategies, which circumvent these restrictions, to build the part as fast as possible under the restriction of a fully dense part with a smooth top surface. These process strategies are suitable to reduce the build time and costs, maximize the beam power usage, and therefore use the potential of high power electron beam guns.

This is a preview of subscription content, access via your institution.


  1. Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67:318–330. doi:10.1016/j.camwa.2013.10.001

    Article  MathSciNet  Google Scholar 

  2. Ammer R, Rüde U, Markl M, Jüchter V, Körner C (2014) Validation experiments for lbm simulations of electron beam melting. Int J Modern Phys C 25(2). doi:10.1142/S0129183114410095

  3. Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal M H, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid ti-6al-4v alloy. Int J Thermophys 27(2):507–529. doi:10.1007/s10765-005-0001-6

    Article  Google Scholar 

  4. Boyer R, Welsch G, Collings EW (eds) (1998) Material properties handbook: titanium alloys. In: Boyer R, Welsch G, Collings EW (eds) Material properties handbook, ASM International

  5. Chatterjee D, Chakraborty S (2006) A hybrid lattice Boltzmann model for solid-liquid phase transition in presence of fluid flow. Phys Lett A 351:359–367

    Article  MATH  Google Scholar 

  6. Feichtinger C, Donath S, Köstler H, Götz J, Rüde U (2011) Walberla: HPC software design for computational engineering simulations. J Comput Sci 2(2):105–112. doi:10.1016/j.jocs.2011.01.004

    Article  Google Scholar 

  7. Ginzburg I (2005) Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv Water Resour 28(11):1196–1216

    Article  Google Scholar 

  8. Handbook Committee ASM International (ed) (1990) Metals handbook: properties and selection—nonferrous alloys and special-purpose materials, metals handbook, vol 2. ASM International

  9. He X, Chen S, Doolen G (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146:282–200

    Article  MATH  MathSciNet  Google Scholar 

  10. Heinl P, Rottmair A, Körner C, Singer R (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364. doi:10.1002/adem.200700025

    Article  Google Scholar 

  11. Higuera F, Jimenez J (1989) Boltzmann approach to lattice gas simulations. Europhys Lett:9

  12. Jüchter V, Scharowsky T, Singer R, Körner C (2014) Processing window and evaporation phenomena for ti-6al-4v produced by selective electron beam melting. Acta Materialia 76:252–258. doi:10.1016/j.actamat.2014.05.037

    Article  Google Scholar 

  13. Klassen A, Scharowsky T, Körner C (2014) Evaporation model for beam based additive manufacturing using free surface lattice boltzmann methods. J Phys D: Appl Phys 47(27). doi:10.1088/0022-3727/47/27/275303

  14. Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121:179–196

    Article  MATH  MathSciNet  Google Scholar 

  15. Kornilov S, Rempe N, Beniyash A, Murray N, Hassel T, Ribton C (2013) On the beam parameters of an electron gun with a plasma emitter. Techn Phys Lett 39(10):843–846

    Article  Google Scholar 

  16. Köstler H, Rüde U (2013) The cse software challenge—covering the complete stack. IT-Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik 55(3):91–96. doi:10.1524/itit.2013.0010

    Google Scholar 

  17. Lu H M, Jiang Q (2005) Surface tension and its temperature coefficient for liquid metals. J Phys Chem B 109(32):15,463–15,468. doi:10.1021/jp0516341

    Article  Google Scholar 

  18. Markl M, Ammer R, Ljungblad U, Rüde U, Körner C (2013) Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment. Procedia Comput Sci 18:2127–2136. doi:10.1016/j.procs.2013.05.383. 2013 International Conference on Computational Science

    Article  Google Scholar 

  19. Massaioli F, Benzi R, Succi S (1993) Exponential tails in two-dimensional Rayleigh-Bnard convection. Europhys Lett 21:305

    Article  Google Scholar 

  20. McNamara G, Zanetti C (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett:61

  21. Murr L, Amato K, Li S, Tian Y, Cheng X, Gaytan S, Martinez E, Shindo P, Medina F, Wicker R (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4(7):1396–1411

    Article  Google Scholar 

  22. Palmer B, Rector D (2000) Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J Comput Phys 161:1–20

    Article  MATH  MathSciNet  Google Scholar 

  23. Rawal S, Brantley J, Karabudak N (2013) Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In: 2013 6th international conference on recent advances in space technologies (RAST), pp 5–11. doi:10.1109/RAST.2013.6581260

  24. Shan X (1997) Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Phys Rev E 55:2780–2788

    Article  Google Scholar 

  25. Shi B, Guo Z (2009) Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys Rev E 79:016,701. doi:10.1103/PhysRevE.79.016701

    Article  Google Scholar 

  26. Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13(2):89–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matthias Markl.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markl, M., Ammer, R., Rüde, U. et al. Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. Int J Adv Manuf Technol 78, 239–247 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: