Advertisement

Volumetric error formulation and mismatch test for five-axis CNC machine compensation using differential kinematics and ephemeral G-code

  • Mehrdad GiviEmail author
  • J. R. R Mayer
ORIGINAL ARTICLE

Abstract

Machine tool kinematic errors directly impact on the accuracy of machined parts. A general volumetric error formulation effectively implementing ISO230-1:2012 definition and an off-line compensation scheme are proposed and partly tested to improve part accuracy on a five-axis CNC machine. Using rigid body kinematics and estimated machine error parameters, the machine position commands contained in a standard G-code are used to calculate the tool erroneous location. The Jacobian, expressing the differential joint space to Cartesian space relationship, is also developed and used to calculate minute joint command modifications so that the effect of inter-axis link errors and intra-axis error motions, for example, can be canceled by making small changes directly to the G-code. Finally, a simple case of a machining sequence producing a surface mismatch in the presence of particular machine deviations is used to illustrate the usefulness of the analytical tools presented. A graphical representation of the volumetric errors assists in understanding the impact of each error source for this particular application. The measurement results are compatible with the predicted volumetric error values and show an accuracy improvement of about 90 % after compensation.

Keywords

Volumetric error Five-axis machine Off-line compensation G-code Mismatch test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57:660–675CrossRefGoogle Scholar
  2. 2.
    Paul RP, Shimano B, Mayer GE (1981) Differential kinematic control equations for simple manipulators. IEEE Trans Syst Man Cybern 11:456–460CrossRefGoogle Scholar
  3. 3.
    Abbaszadeh-Mir Y, Mayer JRR, Cloutier G, Fortin C (2002) Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar. Int J Prod Res 40:4781–4797CrossRefzbMATHGoogle Scholar
  4. 4.
    Srivastava AK, Veldhuis SC, Elbestawit MA (1995) Modelling geometric and thermal errors in a five-axis cnc machine tool. Int J Mach Tools Manuf 35:1321–1337CrossRefGoogle Scholar
  5. 5.
    Donmez MA, Blomquist DS, Hocken RJ, Liu CR, Barash MM (1986) A general methodology for machine tool accuracy enhancement by error compensation. Precis Eng 8:187–196CrossRefGoogle Scholar
  6. 6.
    Koliskor A (1971) Compensating for automatic-cycle machining errors. Mach Tooling 5:1–14Google Scholar
  7. 7.
    Denavit J (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J Appl Mech 22:215–221zbMATHMathSciNetGoogle Scholar
  8. 8.
    Mahbubur RMD, Heikkala J, Lappalainen K, Karjalainen JA (1997) Positioning accuracy improvement in five-axis milling by post processing. Int J Mach Tools Manuf 37:223–236CrossRefGoogle Scholar
  9. 9.
    Wang S-M, Liu Y-L, Kang Y (2002) An efficient error compensation system for CNC multi-axis machines. Int J Mach Tools Manuf 42:1235–1245CrossRefGoogle Scholar
  10. 10.
    Wang S-M, Lin J-J (2013) On-machine volumetric-error measurement and compensation methods for micro machine tools. Int J Precis Eng Manuf 14:989–994CrossRefGoogle Scholar
  11. 11.
    Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33:194–201CrossRefGoogle Scholar
  12. 12.
    Khan A, Chen W (2011) A methodology for systematic geometric error compensation in five-axis machine tools. Int J Adv Manuf Technol 53:615–628CrossRefGoogle Scholar
  13. 13.
    Lo C-HH (1994) Real-time error compensation on machine tools through optimal thermal error modeling. University of Michigan, Michigan, p 182Google Scholar
  14. 14.
    Lei WT, Hsu YY (2003) Accuracy enhancement of five-axis CNC machines through real-time error compensation. Int J Mach Tools Manuf 43:871–877CrossRefGoogle Scholar
  15. 15.
    Hsu YY, Wang SS (2007) A new compensation method for geometry errors of five-axis machine tools. Int J Mach Tools Manuf 47:352–360CrossRefGoogle Scholar
  16. 16.
    Jing HJ, Yao YX, Chen SD, Wang XP (2006) Machining accuracy enhancement by modifying NC program. Adv Mach Manuf Technol eighth: 71–5Google Scholar
  17. 17.
    Lu Y, Li JG, Gao D, Zhou F (2011) Reconstructing NC program-based geometrical error compensation for heavy-duty NC machine tool. Adv Mater Res 314:2082–2086CrossRefGoogle Scholar
  18. 18.
    Schultschik R (1977) The components of the volumetric accuracy. Ann CIRP 25(1):223–227Google Scholar
  19. 19.
    ISO 230–1 (2012) Test code for machine tools—part 1: geometric accuracy of machines operating under no-load or quasi-static conditionsGoogle Scholar
  20. 20.
    Mayer JRR (2012) Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact. CIRP Ann Manuf Technol 61:515–518CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Ecole Polytechnique de MontrealMontrealCanada

Personalised recommendations