Skip to main content
Log in

Mathematical modeling and experimental testing of high-speed spindle behavior

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The prediction of thermo-mechanical behavior of the spindle is essential for machining precision. Particularly, the characteristics of high-speed spindles depend on their thermal behavior. The heat generated on the bearings transfers to the spindle and surrounding air, thus causing the thermal expansion of spindle elements. This paper presents the thermo-mechanical model of the spindle with ball bearings with angular contact. In this paper, the main source of heat on the spindle occurs due to friction torque on bearings with angular contact. The presented model is based on the mechanical model of the bearing and the numerical model (FEM) of the spindle. The proposed solution considers non-stationary change of temperature, thermal deformation, and bearing stiffness, based on the angular position of the ball. Predicting of bearing characteristics has been used to establish the change in static stiffness of the spindle nose as well as the effect of thermal expansion on the machining accuracy. In order to validate the model, experiments have been performed for different speeds. The paper establishes that the predicted temperatures on the spindle and spindle nose stiffness under different speeds correspond to those measured experimentally. The results of the experiment have shown that the increase of spindle speed causes the increase of bearing temperature, thus leading to the expansion of bearing elements. Additionally, these changes cause increased stiffness of the bearing, which in turn increases the stiffness of the spindle nose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JS, Hsu WY (2003) Characterizations and models for the thermal growth of a motorized high-speed spindle. Int J Mach Tools Manuf 43(11):1163–1170

    Article  Google Scholar 

  2. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802

    Article  Google Scholar 

  3. Zverev IA, Eun IU, Chung WJ, Lee CM (2003) Simulation of spindle units running on rolling bearings. Int J Adv Manuf Technol 21(10–11):889–895

    Article  Google Scholar 

  4. Lin CW, Tu JF, Kamman J (2003) An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high-speed rotation. Int J Mach Tools Manuf 43(10):1035–1050

    Article  Google Scholar 

  5. Li H, Shin YC (2004) Analysis of bearing configuration effects on high-speed spindles using an integrated dynamic thermo-mechanical spindle model. Int J Mach Tools Manuf 44(4):347–364

    Article  Google Scholar 

  6. Haitao Z, Jianguo Y, Jinhua S (2007) Simulation of thermal behavior of a CNC machine tool spindle. Int J Mach Tools Manuf 47(6):1003–1010

    Article  Google Scholar 

  7. Cao Y (2006) Modeling of high-speed machine tools spindle system. Doctoral Dissertation, The University of British Columbia

  8. Li H, Shin YC (2004) Integrated dynamic thermo-mechanical modeling of high-speed spindles, part 1: model development. J Manufac ScI Eng Trans ASME 126(1):148–158

    Article  Google Scholar 

  9. Jedrzejewski J, Modrzycki W (1992) A new approach to modelling thermal behaviour of a machine tool under service conditions. CIRP Ann Manuf Technol 41(1):455–458

    Article  Google Scholar 

  10. Jȩdrzejewski J, Kowal Z, Kwaśny W, Modrzycki W (2004) Hybrid model of high-speed machining centre headstock. CIRP Ann Manuf Technol 53(1):285–288

    Article  Google Scholar 

  11. Wock M, Spachtholz G (2003) 3- and 4-contact point spindle bearings—a new approach for high-speed spindle systems. CIRP Ann Manuf Technol 52(1):311–316

    Article  Google Scholar 

  12. Jones AB (1960) A general theory for elastically constrained ball and roller bearings under arbitrary load and speed conditions. J Basic Eng Trans ASME 82:309–320

    Article  Google Scholar 

  13. Houpert L (1997) A uniform analytical approach for ball and roller bearings calculations. J Tribol 119(4):851–858

    Article  Google Scholar 

  14. Hernot X, Sartor M, Guillot J (2000) Calculation of the stiffness matrix of angular contact ball bearings by using the analytical approach. J Mech Des 122(1):83–90. doi:10.1115/1.533548

    Article  Google Scholar 

  15. Harris TA, Michael, N. K. (2007) Rolling bearing analysis: advanced concepts of bearing technology. Taylor & Francis Group

  16. Gunduz A (2012) Multi-dimensional stiffness characteristics of double row angular contact ball bearings and their role in influencing vibration modes. Doctoral Dissertation, The Ohio State University

  17. Gunduz A, Singh R (2013) Stiffness matrix formulation for double row angular contact ball bearings: analytical development and validation. J Sound Vib 332(22):5898–5916

    Article  Google Scholar 

  18. Jiang S, Zheng S (2010) A modeling approach for analysis and improvement of spindle-drawbar-bearing assembly dynamics. Int J Mach Tools Manuf 50(1):131–142

    Article  Google Scholar 

  19. Tung Liao N, Lin JF (2002) Ball bearing skidding under radial and axial loads. Mech Mach Theory 37(1):91–113

    Article  MATH  Google Scholar 

  20. Antoine JF, Abba G, Molinari A (2006) A new proposal for explicit angle calculation in angular contact ball bearing. J Mech Des Trans ASME 128(2):468–478

    Article  Google Scholar 

  21. Stein JL, Tu JF (1994) State-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools. J Dyn Syst Measurement Cont Trans ASME 116(3):372–386

    Article  MATH  Google Scholar 

  22. Tu JF, Stein JL (1995) On-line preload monitoring for anti-friction spindle beatings of high-speed machine tools. J Dyn Syst Measurement Cont Trans ASME 117(1):43–53

    Article  Google Scholar 

  23. Bossmanns B, Tu JF (1999) Thermal model for high-speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366

    Article  Google Scholar 

  24. Bossmanns B, Tu JF (2001) A power flow model for high-speed motorized spindles—heat generation characterization. J Manufac Sci Eng Trans ASME 123(3):494–505

    Article  Google Scholar 

  25. Jdrzejewski J, Kowal Z, Kwaśny W, Modrzycki W (2005) High-speed precise machine tools spindle units improving. J Mater Process Technol 162–163(SPEC. ISS):615–621

    Article  Google Scholar 

  26. Holkup T, Cao H, Kolář P, Altintas Y, Zelený J (2010) Thermo-mechanical model of spindles. CIRP Ann Manuf Technol 59(1):365–368

    Article  Google Scholar 

  27. Zeljkovic M, Gatalo R, Kalajdzic M (1999) Experimental and computer aided analysis of high-speed spindle assembly behaviour. CIRP Ann Manuf Technol 48(1):325–328

    Article  Google Scholar 

  28. Jiang S, Mao H (2010) Investigation of variable optimum preload for a machine tool spindle. Int J Mach Tools Manuf 50(1):19–28

    Article  Google Scholar 

  29. Zahedi A, Movahhedy MR (2012) Thermo-mechanical modeling of high-speed spindles. Scientia Iranica 19(2):282–293

    Article  Google Scholar 

  30. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  Google Scholar 

  31. Zeljkovic M, Zivkovic A, Borojev L (2005) Influence of the bearing configuration on the high-speed main spindle behavior. Machine Eng 3(1–2):165–176

    Google Scholar 

  32. Zivkovic A, Zeljkovic M, Tabakovic S (2010) Mathematical model for the roller bearing life determination. J Manufac Eng 8(3):108–115

    Google Scholar 

  33. Harris TA, Michael, N. K. (2007) Rolling bearing analysis: essential concepts of bearing technology. Taylor & Francis Group

  34. Zivkovic A (2013) Computer and experimental analysis of behavior ball bearings for special applications. Doctoral dissertation, University of Novi Sad, Novi Sad

  35. Jang G, Jeong S-W (2004) Vibration analysis of a rotating system due to the effect of ball bearing waviness. J Sound Vib 269(3–5):709–726

    Article  Google Scholar 

  36. Uhlmann E, Hu J (2012) Thermal modelling of a high-speed motor spindle. Procedia CIRP 1:313–318

    Article  Google Scholar 

  37. Kim SM, Lee SK (2001) Prediction of thermo-elastic behavior in a spindle-bearing system considering bearing surroundings. Int J Mach Tools Manuf 41(6):809–831

    Article  Google Scholar 

  38. Incropera FP, Lavine AS, DeWitt DP (2011) Fundamentals of heat and mass transfer. John Wiley & Sons

  39. Yovanovich MM (1971) Thermal constriction resistance between contacting metallic paraboloids: application to instrument bearings. AIAA Prog in Astronaut Aeronaut Heat Trans Spacecraft Con 24:337–358

    Google Scholar 

  40. Takabi J, Khonsari MM (2013) Experimental testing and thermal analysis of ball bearings. Tribol Int 60:93–103

    Article  Google Scholar 

  41. Fénot M, Bertin Y, Dorignac E, Lalizel G (2011) A review of heat transfer between concentric rotating cylinders with or without axial flow. Int J Therm Sci 50(7):1138–1155

    Article  Google Scholar 

  42. Zhang J, Feng P, Chen C, Yu D, Wu Z (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527. doi:10.1007/s00170-013-4939-4

    Article  Google Scholar 

  43. Min X, Shuyun J, Ying C (2007) An improved thermal model for machine tool bearings. Int J Mach Tools Manuf 47(1):53–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Zivkovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zivkovic, A., Zeljkovic, M., Tabakovic, S. et al. Mathematical modeling and experimental testing of high-speed spindle behavior. Int J Adv Manuf Technol 77, 1071–1086 (2015). https://doi.org/10.1007/s00170-014-6519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6519-7

Keywords

Navigation