Advertisement

Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11

  • Wei Ji
  • Xianli LiuEmail author
  • Lihui Wang
  • Shilong Sun
ORIGINAL ARTICLE

Abstract

Titanium alloys are widely used in aerospace industrial components characterised by high material removal rate, of which the machining efficiency is a big issue. Targeting the problem, this paper presents the experimental findings of milling of titanium alloy TC11 using polycrystalline diamond (PCD) cutting tool at high feed rate. First, in order to verify the capability of PCD in finish milling of titanium alloys at high feed rate, the surface roughness R a is investigated under different PCD tool geometries (radial rake angle, axial rake angle and insert sharp radius), and the results indicate that its range is from 0.821 to 1.562 μm, which is suitable to titanium components. Also, the main tool failure patterns, cutting edge fracture and flank face wear, are observed and classified. Based on the tool failure patterns, the relationship between tool life and tool geometries is established. In order to explain the reasons of tool failures, the relationships between cutting forces and the tool geometries are made clear. Finally, the processes of flank face wear and rake face wear of PCD insert are proposed to show its wear evaluations.

Keywords

High-feel milling PCD Tool geometries Titanium alloy TC11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lutjering G, Williams J (2003) Titanium. Springer, BerlinGoogle Scholar
  2. 2.
    Godbole S (2013) The technological trendsetter. Trade magazine for efficient manufacturing, vol 9–10. Publish-Industry Verlag, MunichGoogle Scholar
  3. 3.
    Aspinwall DK, Dewes RC, Mantle AL (2005) The machining of γ-TiAI intermetallic alloys. CIRP Ann Manuf Technol 54(1):99–104. doi: 10.1016/s0007-8506(07)60059-6 CrossRefGoogle Scholar
  4. 4.
    Bhaumik SK, Divakar C, Singh AK (1995) Machining Ti -6AI-4V alloy with a WBN-CBN composite tool. Mater Des 16(4):221–226CrossRefGoogle Scholar
  5. 5.
    Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118:231–237CrossRefGoogle Scholar
  6. 6.
    Pérez RGV (2005) Wear mechanisms of WC inserts in face milling of gamma titanium aluminides. Wear 259(7–12):1160–1167. doi: 10.1016/j.wear.2005.02.062 CrossRefGoogle Scholar
  7. 7.
    Jaffery SHI, Mativenga PT (2011) Wear mechanisms analysis for turning Ti-6Al-4V—towards the development of suitable tool coatings. Int J Adv Manuf Technol 58(5–8):479–493. doi: 10.1007/s00170-011-3427-y Google Scholar
  8. 8.
    Rao B, Dandekar CR, Shin YC (2011) An experimental and numerical study on the face milling of Ti–6Al–4V alloy: tool performance and surface integrity. J Mater Process Technol 211(2):294–304. doi: 10.1016/j.jmatprotec.2010.10.002 CrossRefGoogle Scholar
  9. 9.
    Hou J, Zhou W, Duan H, Yang G, Xu H, Zhao N (2014) Influence of cutting speed on cutting force, flank temperature, and tool wear in end milling of Ti-6Al-4V alloy. Int J Adv Manuf Technol 70(9–12):1835–1845. doi: 10.1007/s00170-013-5433-8 CrossRefGoogle Scholar
  10. 10.
    An QL, Fu YC, Xu JH (2011) Experimental study on turning of TC9 titanium alloy with cold water mist jet cooling. Int J Mach Tools Manuf 51(6):549–555. doi: 10.1016/j.ijmachtools.2011.03.005 CrossRefGoogle Scholar
  11. 11.
    Li A, Zhao J, Wang D, Zhao J, Dong Y (2012) Failure mechanisms of a PCD tool in high-speed face milling of Ti–6Al–4V alloy. Int J Adv Manuf Technol 67(9–12):1959–1966. doi: 10.1007/s00170-012-4622-1 Google Scholar
  12. 12.
    Rotella G, Dillon OW, Umbrello D, Settineri L, Jawahir IS (2013) The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int J Adv Manuf Technol 71(1–4):47–55. doi: 10.1007/s00170-013-5477-9 Google Scholar
  13. 13.
    Rotella G, Dillon OW Jr, Umbrello D, Settineri L, Jawahir IS (2014) The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int J Adv Manuf Technol 71(1–4):47–55. doi: 10.1007/s00170-013-5477-9 CrossRefGoogle Scholar
  14. 14.
    Nabhani F (2001) Machining of aerospace titanium alloys. Robot Comput Integr Manuf 17:99–106CrossRefGoogle Scholar
  15. 15.
    Su H, Liu P, Fu Y, Xu J (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin J Aeronaut 25(5):784–790. doi: 10.1016/s1000-9361(11)60445-7 CrossRefGoogle Scholar
  16. 16.
    Amin AKMN, Ismail AF, Nor Khairusshima MK (2007) Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V. J Mater Process Technol 192–193:147–158. doi: 10.1016/j.jmatprotec.2007.04.095 CrossRefGoogle Scholar
  17. 17.
    Oosthuizen GA, Akdogan G, Treurnicht N (2010) The performance of PCD tools in high-speed milling of Ti6Al4V. Int J Adv Manuf Technol 52(9–12):929–935. doi: 10.1007/s00170-010-2804-2 Google Scholar
  18. 18.
    Corduan N, Himbart T, Poulachon G, Dessoly M, Lambertin M, Vigneau J, Payoux B (2003) Wear mechanisms of new tool materials for Ti-6AI-4V high performance machining. CIRP Ann Manuf Technol 52(1):73–76. doi: 10.1016/s0007-8506(07)60534-4 CrossRefGoogle Scholar
  19. 19.
    Kuljanic E, Fioretti M, Beltrame L, Miani F (1998) Milling titanium compressor blades with PCD cutter. CIRP Ann Manuf Technol 47(1):61–64. doi: 10.1016/s0007-8506(07)62785-1 CrossRefGoogle Scholar
  20. 20.
    Sutter G, List G (2013) Very high speed cutting of Ti–6Al–4V titanium alloy—change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43. doi: 10.1016/j.ijmachtools.2012.11.004 CrossRefGoogle Scholar
  21. 21.
    Ren L (2009) Design and optimization of experiment. Science Press Ltd., BeijingGoogle Scholar
  22. 22.
    ISO (1989) Tool life testing in milling—part 1: face milling. ISO 8688–1:1989. International Organization for Standards, GenevaGoogle Scholar
  23. 23.
    ISO (1989) Tool life testing in milling—part 2: end milling. ISO 8688–2:1989. International Organization for Standards, GenevaGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Harbin University of Science and TechnologyHarbinChina
  2. 2.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations