An experimental investigation on surface finish in die-sinking EDM of Ti-5Al-2.5Sn

  • Md. Ashikur Rahman KhanEmail author
  • M. M. Rahman
  • K. Kadirgama


Electrical discharge machining (EDM) is a non-conventional process for shaping hard metals and forming deep and complex-shaped holes by spark erosion in all kinds of electroconductive materials. The choice of the electrical parameters on the EDM process depends impressively on workpiece-electrode material combination. In this research, an effort has been made to study the surface finish characteristics of the machined surface in EDM on Ti-5Al-2.5Sn titanium alloy. The microstructure of the machined surface is investigated for discharge energy and electrode materials. The peak current, pulse-on time, pulse-off time, servo-voltage and electrode material (copper, copper–tungsten and graphite) are considered as process variables. The experimental work was performed based on an experiment design (central composite design). The surface roughness (SR) increases with peak current and pulse-on time and decreases with servo-voltage. Besides, the effect of the process parameters on surface roughness depends on electrode material. At low discharge energy, copper–tungsten electrode produces the finest surface structure whilst graphite delivers worst surface characteristics. Copper–tungsten with low discharge energy (low peak current and pulse-on time) can be used to obtain better surface finish.


EDM Surface finish Ti-5Al-2.5Sn Electrode materials Process variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singh S, Maheshwari S, Pandey PC (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J Mater Process Technol 149:272–277CrossRefGoogle Scholar
  2. 2.
    Tsai HC, Yan BH, Huang FY (2003) EDM performance of Cr/Cu-based composite electrodes. Int J Mach Tools Manuf 43:245–252CrossRefGoogle Scholar
  3. 3.
    Rahman MM, Khan MAR, Kadirgama K, Noor MM, Bakar RA (2011) Optimization of machining parameters on tool wear rate of Ti-6Al-4V through EDM using copper tungsten electrode: A statistical approach. Adv Mater Res 152–153:1595–1602Google Scholar
  4. 4.
    Rahman MM, Khan MAR, Kadirgama K, Noor MM, Bakar RA (2010) Modeling of material removal on machining of Ti-6Al-4V through EDM using copper tungsten electrode and positive polarity. Int J Mech Mater Eng 1(3):135–140Google Scholar
  5. 5.
    Pradhan MK, Biswas CK (2009) Modeling and analysis of process parameters on surface roughness in EDM of AISI D2 tool steel by RSM approach. Int J Eng Appl Sci 5(5):346–351Google Scholar
  6. 6.
    Tomadi SH, Hassan MA, Hamedon Z, Daud R, Khalid AG (2009) Analysis of the influence of EDM parameters on surface quality, material removal rate and electrode wear of tungsten carbide. Proc Int MultiConf Eng Comput Sci 2:1803–1808Google Scholar
  7. 7.
    Hascalik A, Caydas U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl Surf Sci 253:9007–9016CrossRefGoogle Scholar
  8. 8.
    Patel KM, Pandey PM, Rao PV (2009) Determination of an optimum parametric combination using a surface roughness prediction model for EDM of Al2O3/SiCw/TiC ceramic composite. Mater Manuf Process 24:675–682CrossRefGoogle Scholar
  9. 9.
    Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng 29(4):367–371CrossRefGoogle Scholar
  10. 10.
    Beri N, Maheshwari S, Sharma C, Kumar A (2008) Performance evaluation of powder metallurgy electrode in electrical discharge machining of AISI D2 steel using Taguchi method. Int J Mech Syst Sci Eng 2(3):167–171Google Scholar
  11. 11.
    Jahan MP, Wong YS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209:3956–3967CrossRefGoogle Scholar
  12. 12.
    Lee SH, Li XP (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115:344–358CrossRefGoogle Scholar
  13. 13.
    Kiyak M, Cakir O (2007) Examination of machining parameters on surface roughness in EDM of tool steel. J Mater Process Technol 191:141–144CrossRefGoogle Scholar
  14. 14.
    Amorim FL, Weingaertner WL (2004) Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds. J Braz Soc Mech Sci Eng 26(2):137–144CrossRefGoogle Scholar
  15. 15.
    Jung JH, Kwon WT (2010) Optimization of EDM process for multiple performance characteristics using Taguchi method and grey relational analysis. J Mech Sci Technol 24(5):1083–1090CrossRefGoogle Scholar
  16. 16.
    Rao PS, Kumar JS, Reddy KVK, Reddy BS (2010) Parametric study of electrical discharge machining of AISI 304 stainless steel. Int J Eng Sci Technol 2(8):3535–3550Google Scholar
  17. 17.
    Joshi SN, Pande SS (2011) Intelligent process modeling and optimization of die-sinking electric discharge machining. Appl Soft Comput 11:2743–2755CrossRefGoogle Scholar
  18. 18.
    Ndaliman MB, Khan AA, Ali MY (2011) Surface modification of titanium alloy through electrical discharge machining (EDM). Int J Mech Mater Eng 6(3):380–384Google Scholar
  19. 19.
    Salem SB, Tebni W, Bayraktar E (2011) Prediction of surface roughness by experimental design methodology in electrical discharge machining (EDM). J Achiev Mater Manuf Eng 49(2):150–157Google Scholar
  20. 20.
    Gostimirovic M, Kovac P, Sekulic M, Skoric B (2012) Influence of discharge energy on machining characteristics in EDM. J Mech Sci Technol 26(1):173–179CrossRefGoogle Scholar
  21. 21.
    Gostimirovic M, Kovac P, Skoric B, Sekulic M (2012) Effect of electrical pulse parameters on the machining performance in EDM. Indian J Eng Mater Sci 18:411–415Google Scholar
  22. 22.
    Daneshmand S, Kahrizi EF, Abedi E, Abdolhosseini MM (2013) Influence of machining parameters on electro discharge machining of NiTi shape memory alloys. Int J Electrochem Sci 8:3095–3104Google Scholar
  23. 23.
    Raghav G, Kadam BS, Kumar M (2013) Optimization of material removal rate in electric discharge machining using mild steel. Int J Emerg Sci Eng 1(7):2319–6378Google Scholar
  24. 24.
    Pawade MM, Banwait SS (2013) A brief review of die sinking electrical discharging machining process towards automation. Am J Mech Eng 1(2):43–49CrossRefGoogle Scholar
  25. 25.
    Khan MAR, Rahman MM, Kadirgama K, Maleque MA, Ishak M (2011) Prediction of surface roughness of Ti-6Al-4V in electrical discharge machining: A regression model. J Mech Eng Sci 1:16–24CrossRefGoogle Scholar
  26. 26.
    Marafona J, Wykes C (2000) A new method of optimising material removal rate using EDM with copper–tungsten electrodes. Int J Mach Tools Manuf 40:153–164CrossRefGoogle Scholar
  27. 27.
    Jones FD, Ryffel HH, Oberg E, McCauley CJ, Heald RM (2004) Machinery’s handbook. Industrial Press, New YorkGoogle Scholar
  28. 28.
    Mohri N, Saito N, Tsunekawa Y (1993) Metal surface modification by electrical discharge machining with composite electrode. CIRP Ann Manuf Technol 42:219–222CrossRefGoogle Scholar
  29. 29.
    Mahamat ATZ, Rani AMA, Husain P (2011) Machining of cemented tungsten carbide using EDM. J Appl Sci 11(10):1784–1790CrossRefGoogle Scholar
  30. 30.
    Wu KL, Yan BH, Lee JW, Ding CG (2009) Study on the characteristics of electrical discharge machining using dielectric with surfactant. J Mater Process Technol 209:3783–3789CrossRefGoogle Scholar
  31. 31.
    Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Technol 54(2):64–87CrossRefGoogle Scholar
  32. 32.
    Lin YC, Chen YF, Wang DA, Lee HS (2009) Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. J Mater Process Technol 209:3374–3383CrossRefGoogle Scholar
  33. 33.
    Joshi SN, Pande SS (2009) Development of an intelligent process model for EDM. Int J Adv Manuf Technol 45(3):300–317CrossRefGoogle Scholar
  34. 34.
    Senthilkumar V, Omprakash BU (2011) Effect of titanium carbide particle addition in the aluminium composite on EDM process parameters. J Manuf Process 13:60–66CrossRefGoogle Scholar
  35. 35.
    Kathiresan M, Sornakumar T (2010) EDM studies on aluminum alloy-silicon carbide composites developed by vortex technique and pressure die casting. J Miner Mater Charact Eng 9(1):79–88Google Scholar
  36. 36.
    Bonny K, De Baets P, Van Wittenberghe J, Delgado YP, Vleugels J, Van der Biest O, Lauwers B (2010) Influence of electrical discharge machining on sliding friction and wear of WC–Ni cemented carbide. Tribol Int 43:2333–2344CrossRefGoogle Scholar
  37. 37.
    Lee HT, Tai TY (2003) Relationship between EDM parameters and surface crack formation. J Mater Process Technol 142:676–683CrossRefGoogle Scholar
  38. 38.
    Rebelo JC, Dias AM, Mesquita R, Vassalo P, Santos M (2000) An experimental study on electro-discharge machining and polishing of high strength copper-beryllium alloys. J Mater Process Technol 103:389–397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Md. Ashikur Rahman Khan
    • 1
    Email author
  • M. M. Rahman
    • 2
  • K. Kadirgama
    • 2
  1. 1.Department of Information and Communication TechnologyNoakhali Science and Technology UniversityNoakhaliBangladesh
  2. 2.Faculty of Mechanical EngineeringUniversiti Malaysia PahangPekanMalaysia

Personalised recommendations