Skip to main content
Log in

Micro end-milling of channels using ultrafine-grained low-carbon steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

During micromachining, the interaction between the cutting tool and the workpiece material may cause damages on the machined surface related to material deformation. It would be interesting that the workpiece microstructure suits the scale of the cutting parameters. Very little has been investigated on how a metallurgically modified material responds to microcutting. This research evaluated the effect of an ultrafine-grained material in the micromilling of grooves. Dual-phase low-carbon steel (ferrite-pearlite) was submitted to warm rolling for grain refinement (from 11- to 0.7-μm size of ferrite grains). The effect of tool cutting edge radius (re), feed per tooth (ft), tool diameter, and speed cutting upon surface roughness and burr formation during end-milling of the original material and the modified one was evaluated. The ultrafine-grained material showed better results of surface finishing and presence of burrs when compared to the original dual-phase material. The metallurgical modification of low-carbon steels by grain refinement favored for micromachining of grooves, making it possible to extend applications of this class of steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng Y (2009) Ultra-fine grained steels. China Iron & Steel Research Institute Group, Beijing

    Book  Google Scholar 

  2. Eghbali B, Abdollah-Zadeh A (2005) The influence of thermomechanical parameters in ferrite grain refinement in a low carbon Nb-microalloyed steel. Scrip Mat 51:41–45. doi:10.1016/j.scriptamat.2005.03.014

    Article  Google Scholar 

  3. Rodriguez-Bacaraldo R, Tejedor R, Benito JA, Cabrera JM, Prado JM (2008) Microstructural evolution and mechanical response of nanocrystalline and ultrafine-grained steel obtained by mechanical milling. Mat Sci Eng A 493:215–220. doi:10.1016/j.msea.2007.08.087

    Article  Google Scholar 

  4. Rodrigues AR, Balancin O, Gallego J et al (2012) Surface integrity analysis when milling ultrafine-grained steels. Mat Res 15:125–130. doi:10.1590/S1516-14392011005000094

    Article  Google Scholar 

  5. Komatsu T, Yoshino T, Matsumura T, Torizuka S (2012) Effect of crystal grain size in stainless steel on cutting process in micromilling. 5th CIRP 1:150–155. doi:10.1016/j.procir.2012.04.026

    Article  Google Scholar 

  6. Simoneau A, Ng E, Elbestawi MA (2006) Surface defects during microcutting. Int J Mach Tool Manuf 46:1378–1387. doi:10.1016/j.ijmachtools.2005.10.001

    Article  Google Scholar 

  7. Li G, Xu Z, Fang F et al (2013) Micro cutting of V-shaped cylindrical grating template for roller nano-imprint. J Mat Proc Tech 213:895–904. doi:10.1016/j.jmatprotec.2012.12.010

    Article  Google Scholar 

  8. Komanduri R (1971) Some aspects of machining with negative rake tools simulating grinding. Int J Mach Tool Des Res 11:223–233

    Article  Google Scholar 

  9. Liu X, DeVor RE, Kapoor SG (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng 126:666–679. doi:10.1115/1.1813469

    Article  Google Scholar 

  10. Ding X, Rahman M (2012) A study of the performance of cutting polycrystalline Al 6061 T6 with single crystalline diamond micro-tools. Prec Eng 36:593–603. doi:10.1016/j.precisioneng.2012.04.009

    Article  Google Scholar 

  11. Rodrigues AR, Assis CLF, Balancin O, Silva OV (2012) Processo termomecânico para obtenção de aços ferríticos com grãos ultrafinos. Brazil patent PI11072474

  12. Kaczmarek J (1976) Principles of machining by cutting, abrasion and erosion. Peter Peregrinus Limited, Stevenage

    Google Scholar 

  13. Li HZ, Liu K, Li XP (2001) A new method for determining the undeformed chip thickness in milling. J Mat Proc Tech 113:378–385. doi:10.1016/S0924-0136(01)00586-6

    Article  Google Scholar 

  14. Li K, Chou S (2010) Experimental evaluation of minimum quantity lubrication in near micro-milling. J Mat Proc Tech 210:2163–2170. doi:10.1016/j.jmatprotec.2010.07.031

    Article  Google Scholar 

  15. Lekkala R, Bajpai V, Singh RK, Joshi SS (2011) Characterization and modeling of burr formation in micro-end milling. Prec Eng 35:625–637. doi:10.1016/j.precisioneng.2011.04.007

    Article  Google Scholar 

  16. Biermann D, Steiner M (2012) Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10. 45th CIRP 3:97–102. doi:10.1016/j.procir.2012.07.018

    Google Scholar 

  17. Jin C, Kang I, Park J, Jang S, Kim J (2009) The characteristics of cutting forces in the micro-milling of AISI D2 steel. J Mech Sci Tech 23:2823–2829. doi:10.1007/s12206-009-0804-7

    Article  Google Scholar 

  18. Aramcharoen A, Mativenga PT, Yang S, Cooke KE, Teer DG (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48:1578–1584. doi:10.1016/j.ijmachtools.2008.05.011

    Article  Google Scholar 

  19. Saptaji K, Subbiah S, Dhupia JS (2012) Effect of side angle and effective rake angle on top burrs in micro-milling. Prec Eng 36:444–450. doi:10.1016/j.precisioneng.2012.01.008

    Article  Google Scholar 

  20. Madhavan V, Chandrasekar S, Farris TN (2002) Direct observations of the chip-tool interface in the low speed cutting of pure metals. J Trib 124:617–626. doi:10.1115/1.1398546

    Article  Google Scholar 

  21. Chern G, Wu YE, Cheng J, Yao J (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Prec Eng 31:122–129. doi:10.1016/j.precisioneng.2006.04.001

    Article  Google Scholar 

  22. Schaller T, Bohn L, Mayer J, Schubert K (1999) Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills. Prec Eng 23:229–235. doi:10.1016/S0141-6359(99)00011-2

    Article  Google Scholar 

  23. Schmidt J, Tristschler H (2004) Micro cutting of steel. Micro Tech 10:167–174. doi:10.1007/s00542-003-0346-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleiton L. F. de Assis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Assis, C.L.F., Jasinevicius, R.G. & Rodrigues, A.R. Micro end-milling of channels using ultrafine-grained low-carbon steel. Int J Adv Manuf Technol 77, 1155–1165 (2015). https://doi.org/10.1007/s00170-014-6503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6503-2

Keywords

Navigation