Skip to main content
Log in

Implicit subspace iteration as an efficient method to compute milling stability lobe diagrams

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new method for calculation of chip removal machining stability diagrams is proposed. The method can be considered as an application of the Floquet theorem by repeated time integrations and represents an alternative to the previously presented time domain stability methods (semi-discretisation, time finite elements and so on), without the requirement to build the transition matrix. In this way, the computation effort is very much reduced, especially when the required number of segments is large. As a result, the computing time depends on the number of segments with an exponent 1.5, instead of 2.8 that is the exponent for the optimised semi-discretisation. This results in that the presented method is the most efficient among the previous ones. As a further advantage, the memory requirements for the method are much lower, allowing computing very-high-order stability lobes. As a drawback, for the computation of high-order lobes, the method is not as efficient as could be expected, due to the slow convergence of the eigensystem resolution when many eigenvalues of similar magnitude exist. Even in that case, the method is five times faster than the optimised semi-discretisation, but a more efficient eigenvalue resolution method is sought for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tobias SA, Fiswick W (1958) Theory of regenerative machine tool chatter. Engineer 205:199–203

    Google Scholar 

  2. Tlusty J, Polacek M (1957) Beispiele der behandlung der selbsterregten schwingung der werkzeugmaschinen. FoKoMa, Hanser Verlag, Munich

    Google Scholar 

  3. Merritt HE (1965) Theory of self-excited machine tool chatter. J Eng Ind-T ASME 87:447–454

    Article  Google Scholar 

  4. Opitz H (1969) Investigation and calculation of the chatter behavior of lathes and milling machines. CIRP Ann 18:335–342

    Google Scholar 

  5. Minis I, Yanushevsky T, Tembo R, Hocken R (1990) Analysis of linear and nonlinear chatter in milling. CIRP Ann 39:459–462

    Article  Google Scholar 

  6. Floquet MG (1883) Équations différentielles linéaires à coefficients périodiques. Ann Sci de l’École Normale Supérieure 8:1–36

    Google Scholar 

  7. Budak E, Altintas Y (1998) Analytical prediction of chatter stability conditions for multidegree of freedom systems in milling. Part I: general formulation, Part II: application of the general formulation to common milling systems. J Eng Ind-T ASME 120:22–36

    Google Scholar 

  8. Altintas Y, Budak E (1998) Analytical prediction of stability lobes in milling. CIRP Ann 44:357–362

    Article  Google Scholar 

  9. Davies MA, Pratt JR, Dutterer BS, Burns TJ (2000) The stability of low radial immersion milling. CIRP Ann - Manuf Tech 49(1):37–40

    Article  Google Scholar 

  10. Insperger T, Stépán G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55:503–518

    Article  MATH  Google Scholar 

  11. Insperger T, Mann BP, Stépán G, Bayly PV (2003) Stability of up-milling and down-milling, part 1: alternative analytical methods. Int J Mach Tools Manuf 43:25–34

    Article  Google Scholar 

  12. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng 125:220–225

    Article  Google Scholar 

  13. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313:334–341

    Article  Google Scholar 

  14. Butcher E, Ma H, Bueler E, Averina V, Szabo Z (2004) Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int J Numer Methods Eng 59:895–922

    Article  MATH  MathSciNet  Google Scholar 

  15. Compeán FI, Olvera D, Campa FJ, López de Lacalle LN, Elías-Zúñiga A, Rodríguez CA (2012) Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method. Int J Mach Tools Manuf 57:27–33

    Article  Google Scholar 

  16. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466

    Article  Google Scholar 

  17. Zatarain M, Bediaga I, Muñoa J, Insperger T (2010) Analysis of directional factors in milling: importance of multi-frequency calculation and of the inclusion of the effect of the helix angle. Int J Adv Manuf Technol 47(5):535–542

    Article  Google Scholar 

  18. Dombovari Z, Altintas Y, Stepan G (2010) The effect of serration on mechanics and stability of milling cutters. Int J Mach Tools Manuf 50(6):511–520

    Article  Google Scholar 

  19. Arnaud L, Gonzalo O, Seguy S, Jauregi H, Peigné G (2011) Simulation of low rigidity part machining applied to thin-walled structures. Int J Adv Manuf Technol 54(5–8):479–488

    Article  Google Scholar 

  20. Szalai R, Roose D (2007) Continuation and bifurcation analysis of delay differential equations. Numerical continuation methods for dynamical systems Springer, Netherlands, p 359–399

  21. Adetoro OB, Sim WM, Wen PH (2012) Stability lobes prediction for corner radius end mill using nonlinear cutting force coefficients. Mach Sci Technol 16(1):111–130

    Article  Google Scholar 

  22. Muñoa J, Zatarain Z, Bediaga I, Peigné G, Stability study of the milling process using an exponential force model in frequency domain CIRP—2nd International HPC Conference, Vancouver

  23. Dombovari Z, Wilson RE, Stepan G (2008) Estimates of the bistable region in metal cutting. Proc Royal Soc A 464(2100):3255–3271

    Article  MATH  Google Scholar 

  24. Dombovari Z, Barton DAW, Wilson RE, Stepan G (2011) On the global dynamics of chatter in the orthogonal cutting model. Int J Non-Linear Mech 46(1):330–338

    Article  Google Scholar 

  25. Bachrathy D, Stepan G (2013) Improved prediction of stability lobes with extended multi frequency solution. CIRP Ann-Manuf Technol 62(1):411–414

    Article  Google Scholar 

  26. Zatarain M, Munoa J, Peigné G, Insperger T (2006) Analysis of the influence of mill helix angle on chatter stability. CIRP Ann - Manuf Tech 55(1):365–368

    Article  Google Scholar 

  27. Szekrenyes A (2015) A special case of parametrically excited systems: free vibration of delaminated composite beams. Eur J Mech A/Solids 49:82–105

    Article  MathSciNet  Google Scholar 

  28. Hale J (1977) Theory of functional differential equations. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  29. Farkas M (1994) Periodic motions. Springer-Verlag, Berlin and New York

    Book  MATH  Google Scholar 

  30. Bachrathy D, Stépán G (2012) Bisection method in higher dimensions and the efficiency number. Periodica Polytechnica - Mech Eng 56(2):81–86

    Article  Google Scholar 

  31. Henninger C, Eberhard P (2008) Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. Eur J Mech A Solids 27(6):975–985

    Article  MATH  Google Scholar 

  32. Dombovari Z, Iglesias A, Zatarain M, Insperger T (2011) Prediction of multiple dominant chatter frequencies in milling processes. Int J Mach Tools Manuf 51(6):457–464

    Article  Google Scholar 

  33. Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1:35–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikel Zatarain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatarain, M., Alvarez, J., Bediaga, I. et al. Implicit subspace iteration as an efficient method to compute milling stability lobe diagrams. Int J Adv Manuf Technol 77, 597–607 (2015). https://doi.org/10.1007/s00170-014-6470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6470-7

Keywords

Navigation