Skip to main content
Log in

Thermal analysis of chip formation using FEM and a hybrid explicit-implicit approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Modeling machining operations has been a challenge since the 1900s. It has been by empirical, science-based, and computer-based modeling, which started with FEM by the 1970s. For success material, rupture, friction, and convection have to be correctly modeled. Computation time has always been one of the main limitations for accurately describing heat propagation on machining. The present work proposes and tests a hybrid model using an explicit algorithm for the chip formation and an implicit one for heat propagation. Heat flux on workpiece and tool were obtained by the explicit and used as input to the implicit. Simulated results were in good agreement with experimental end milling for very short periods of computer time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krause F-L, Kimura F, Kjellberg T, Lu SC-Y, van der Wolf, Alting L, ElMaraghy HA, Eversheim W, Iwata K, Suh NP, Tipnis VA, Week M (1993) A.C.H, product modelling. CIRP Ann Manuf Technol 42(2):695–706. doi:10.1016/S0007-8506(07)62532-3

    Article  Google Scholar 

  2. Merchant ME (1998) An interpretive look at 20th century research on modeling of machining. Mach Sci Technol 2(2):p157–p163

    Article  Google Scholar 

  3. van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK, Altintas Y, Armarego E, Dornfeld D, Grabec I, Leopold J, Lindstrom B, Lucca D, Obikawa T, Shirakashi, Sato H (1998) Present situation and future trends in modelling of machining operations progress report of the CIRP Working Group ‘Modelling of Machining Operations’. CIRP Ann Manuf Technol 47(2):587–626. doi:10.1016/S0007-8506(07)63244-2

    Article  Google Scholar 

  4. Coelho RT, Ng E, Elbestalwi M (2007) Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Intl J Mach Tools Manuf 47:263–272

    Article  Google Scholar 

  5. Umbrello D (2008) Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J Mater Process Technol 196(1–3):79–87. doi:10.1016/j.jmatprotec.2007.05.007

    Article  Google Scholar 

  6. Sandstrom DR, Hodowany JN (1998) Modeling the physics of metal cutting in high-speed machining. Mach Sci Technol 2(2):343–353

    Article  Google Scholar 

  7. Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38(21):3675–3694. doi:10.1002/nme.1620382108

    Article  MATH  Google Scholar 

  8. Filice L, Micari F, Rizzuti S, Umbrello D (2008) Dependence of machining simulation effectiveness on material and friction modelling. Mach Sci Technol 12(3):370–389

    Article  Google Scholar 

  9. Sartkulvanich P, Altan T (2005) Effects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysis. Mach Sci Technol (Issue 9):1–26. doi:10.1081/MST-200051211

  10. Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. J Manuf Sci Eng 126(4):849–857. doi:10.1115/1.1813473

    Article  Google Scholar 

  11. Anurag S, Guo YB, Horstemeyer MF (2009) The effect of materials testing modes on finite element simulation of hard machining via the use of internal state variable plasticity model coupled with experimental study. Comput Struct 87(5–6):303–317. doi:10.1016/j.compstruc.2009.01.001

    Article  Google Scholar 

  12. Bil H, Kılıç SE, Tekkaya AE (2004) A comparison of orthogonal cutting data from experiments with three different finite element models. Int J Mach Tools Manuf 44(9):933–944. doi:10.1016/j.ijmachtools.2004.01.016

    Article  Google Scholar 

  13. Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72(7):1049–1069. doi:10.1016/j.engfracmech.2004.07.011

    Article  Google Scholar 

  14. Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47(4–5):719–743. doi:10.1016/j.ijmecsci.2005.03.003

    Article  Google Scholar 

  15. Shirakashia T, Obikawa T (1998) Recent progress and some difficulties in computational modeling of machining. Mach Sci Technol 2(2):277–301. doi:10.1080/10940349808945672

    Article  Google Scholar 

  16. Ceretti E, Filice L, Umbrello D, Micari F (2007) ALE simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface. CIRP Ann Manuf Technol 56(1):69–72. doi:10.1016/j.cirp.2007.05.019

    Article  Google Scholar 

  17. Umbrello D, Filice L, Micari F, Settineri L (2005) A simple model for predicting the thermal flow on the tool in orthogonal cutting process. Proceedings “8th CIRP International Workshop on Modeling of Machining Operations”, Chemnitz (Germany), 10–11 May, pp. 191–197

  18. Bergman TL, Lavine AS, Incropera FP, DeWitt DP (1985) Fundaments of heat and mass transfer, School of Mechanical Engineering Purdue University. John Wiley & Sons, Inc

  19. Guo YB, Anurag S, Jawahir IS (2009) A novel hybrid predictive model and validation of unique hook-shaped residual stress profiles in hard turning. CIRP Ann Manuf Technol 58(1):81–84. doi:10.1016/j.cirp.2009.03.110

    Article  Google Scholar 

  20. Pabst R, Fleischer J, Michna J (2010) Modelling of the heat input for face-milling processes. CIRP Ann Manuf Technol 59(1):121–124. doi:10.1016/j.cirp.2010.03.062

    Article  Google Scholar 

  21. Davies MA, Ueda T, M'Saoubi R, Mullany B, Cooke AL (2007) On the measurement of temperature in material removal processes. CIRP Ann Manuf Technol 56(2):581–604. doi:10.1016/j.cirp.2007.10.009

    Article  Google Scholar 

  22. Fleischer J, Pabst R, Kelemen S (2007) Heat flow simulation for dry machining of power train castings. CIRP Ann Manuf Technol 56(1):117–122. doi:10.1016/j.cirp.2007.05.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Hespanholo Nascimento.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, R.T., de Oliveira, J.F.G. & Nascimento, C.H. Thermal analysis of chip formation using FEM and a hybrid explicit-implicit approach. Int J Adv Manuf Technol 77, 235–240 (2015). https://doi.org/10.1007/s00170-014-6458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6458-3

Keywords

Navigation