Influence of thermal characteristics on microstructure of pulse current GMA weld bead of HSLA steel

  • B. P. Agrawal
  • P. K. GhoshEmail author


The influence of pulse parameters of pulse current gas metal arc welding (P-GMAW) on thermal behavior of weld has been studied considering summarized influence of pulse parameters defined by a dimensionless factor ϕ = [(I b/I p)f. t b], mean current (I m), and heat input (Ω) during weld bead deposition on high-strength low-alloy steel plate using low-alloy steel filler wire. The thermal behavior of the weld has been estimated with the help of appropriate expressions. The validity of those estimations has been confirmed by comparing them with measured values and found that they are well in agreement to each other with a deviation lying in the range of 7 to 8 %. It is observed that variation in thermal characteristics of weld is maintaining good correlation with ϕ, I m, and Ω of the welding process. The thermal characteristics of the weld are correlated to microstructure.


P-GMAW Pulse parameters Weld pool HSLA steel Weld isotherm, thermal cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghosh PK, Devakumaran K, Pramanick AK (2010) Effect of pulse current on shrinkage stress and distortion in multipass GMA welds of different groove sizes. Weld J 89(3):43-s–53-sGoogle Scholar
  2. 2.
    Ghosh PK, Devakumaran K, Bhaskarjyoti S (2009) Arc efficiency in pulsed current gas metal arc welding of ferrous and non-ferrous metals. Australas Weld J 54:38–48Google Scholar
  3. 3.
    Praveen P, Yarlagadda PK, Kang MJ (2005) Advancements in pulse gas metal arc welding. J Mater Process Technol 164–165:1113–1119. doi: 10.1016/j.jmatprotec.2005.02.100 CrossRefGoogle Scholar
  4. 4.
    Quintino L, Alllum CJ (1984) Pulsed GMAW: interactions between process parameters, part I. Weld Met Fabr 16(4):126–129Google Scholar
  5. 5.
    Devkumaran K, Ghosh PK (2009) Thermal characteristics of weld and HAZ during pulse current gas metal arc weld bead deposition on HSLA steel plate. Mater Manuf Process Tailor Francis 25(07):616–630. doi: 10.1080/10426910903229347 CrossRefGoogle Scholar
  6. 6.
    Kulkarni SG (2008) Narrow gap pulse current gas metal arc welding of thick wall 304LN stainless steel pipe. Thesis, Indian Institute of Technology, Roorkee, India, pp.1-276Google Scholar
  7. 7.
    Ghosh PK, Dorn L, Goecke SF (2001) Universality of co-relationships among pulse parameters for different MIG welding power sources. Int J Join Mater 13(2):40–47Google Scholar
  8. 8.
    Ghosh PK, Dorn L, Devakumaran K, Hofmann F (2009) Pulsed current gas metal arc welding under different shielding and pulse parameters; part-1: arc characteristics. ISIJ Int 49(2):251–260. doi: 10.2355/isijinternational.49.251 CrossRefGoogle Scholar
  9. 9.
    Ghosh PK, Dorn L, Devakumaran K, Hofmann F (2009) Pulsed current gas metal arc welding under different shielding and pulse parameters; part-2: behaviour of metal transfer. ISIJ Int 49(2):261–269. doi: 10.2355/isijinternational.49.261 CrossRefGoogle Scholar
  10. 10.
    Goyal VK, Ghosh PK, Saini JS (2007) Process controlled microstructure and cast morphology of dendrite in pulsed current gas metal arc weld deposits of aluminium and Al-Mg alloy. Metall Mater Trans A 38(8):1794–1805. doi: 10.1007/s11661-007-9217-3 CrossRefGoogle Scholar
  11. 11.
    Ghosh PK, Kulkarni SG, Kumar M, Dhiman HK (2007) Pulsed current GMAW for superior weld quality of austenitic stainless steel sheet. ISIJ Int 47(1):138–145. doi: 10.2355/isijinternational.47.138 CrossRefGoogle Scholar
  12. 12.
    Joseph A, Farson D, Harwig D, Richardson R (2005) Influence of GMAW-P current waveforms on heat input and weld bead shape. Sci Technol Weld Join 10(3):311–318. doi: 10.1179/174329305X40624 CrossRefGoogle Scholar
  13. 13.
    Murugan N, Parmar RS (1994) Effect of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel. J Mater Process Technol 41:381–398. doi: 10.1016/0924-0136(94)90003-5 CrossRefGoogle Scholar
  14. 14.
    Robert W, Jr M (1999) Principles of welding. Wiley, New York, pp 1–662Google Scholar
  15. 15.
    Goyal VK, Ghosh PK, Saini JS (2008) Analytical studies on thermal behavior and geometry of weld pool in pulsed current gas metal arc welding. J Mater Process Technol 209:1318–1336. doi: 10.1016/j.jmatprotec.2008.03.035 CrossRefGoogle Scholar
  16. 16.
    Lancaster JF (1999) Metallurgy of welding. Abington, Cambridge CBI 6AH England, pp 1–446CrossRefGoogle Scholar
  17. 17.
    Roshanthal D, Cambridge M (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68:849–865Google Scholar
  18. 18.
    Radaij D (1992) Heat effects on welding. Springer, New York, pp 1–348CrossRefGoogle Scholar
  19. 19.
    Agrawal BP, Ghosh PK (2010) Thermal modeling of multi pass narrow gap pulse current GMA welding by single seam per layer deposition techniques. Mater Manuf Process 25(11):1251–1268. doi: 10.1080/10426914.2010.489593 CrossRefGoogle Scholar
  20. 20.
    Ghosh PK, Goyal VK, Dhiman HK, Kumar M (2006) Thermal and metal transfer behaviour in pulsed current GMA weld deposition of Al-Mg alloy. Sci Technol Weld Join 11(2):232–242. doi: 10.1179/174329306X89251 CrossRefGoogle Scholar
  21. 21.
    Joseph A, Harwig D, Farson DF, Richardson R (2003) Measurement and calculation of arc power and heat transfer efficiency in pulsed gas metal arc welding. Sci Technol Weld Join 8(6):400–406. doi: 10.1179/136217103225005642 CrossRefGoogle Scholar
  22. 22.
    Nguyen NT, Ohta A, Matsuoka K, Suzuki N, Maeda Y (1999) Analytical solution for transient temperature of semi-infinite body subjected to 3-D moving heat source. Weld J 78(8):265-s–274-sGoogle Scholar
  23. 23.
    Nguyen NT, Mai YW, Simpson S, Ohta A (2004) Analytical approximate solution for the double ellipsoidal heat source in finite thick plate. Weld J 83(3):82s–93sGoogle Scholar
  24. 24.
    Goyal VK, Ghosh PK, Saini JS (2008) Influence of pulse parameters on characteristics of bead on plate weld deposits of aluminium and its alloy in the pulsed gas metal arc welding processes. Metall Mater Trans A 39A:3260–3275. doi: 10.1007/s11661-008-9637-8 CrossRefGoogle Scholar
  25. 25.
    Abbaschian R, Abaschian L, Reed Hill R (2009) Physical metallurgy principles, 4th edn. Cengage Learning, Stamford, CT, pp 178–180Google Scholar
  26. 26.
    Moon DW, Fonda RW, Spanos G (2000) Micro hardness variation in HSLA 100 steel welds fabricated with new ultra low carbon weld consumables. Weld J 278s–285s, doi:  10.1007/s 11661-001-0179-6

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.School of Mechanical EngineeringGalgotias UniversityGreater NoidaIndia
  2. 2.Department of Metallurgical & Materials EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations