Skip to main content

Advertisement

Log in

Prediction of surface roughness of end milling operation using genetic algorithm

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, the predictive model is developed to observe the effect of radial rake angle on the end milling cutting tool by considering the following machining parameters: spindle speed, feed rate, axial depth of cut, and radial depth of cut. By referring to the real machining case study, the second-order mathematical models have been developed using response surface methodology (RSM). A number of machining experiments based on statistical five-level full factorial design of experiments are carried out in order to collect surface roughness values. The direct and interaction effects of the machining parameter with surface roughness are analyzed using Design Expert software. The optimal surface roughness value can be attained within the specified limits by using RSM. The genetic algorithm (GA) model is trained and tested in MATLAB to find the optimum cutting parameters leading to minimum surface roughness. The GA recommends 0.25 μm as the best minimum predicted surface roughness value. The confirmatory test shows the predicted values which were found to be in good agreement with observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang DY, Choi Y-G, Kim H-G, Hsiao A (1996) Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning. Int J Mach Tools Manuf 36(4):453–464. doi:10.1016/0890-6955(95)00074-7

    Article  Google Scholar 

  2. Ming-Yung W, Chang H -Y (2004) Experimental study of surface roughness in slot end milling AL2014-T6. Int J Mach Tools Manuf 44:51–57. doi:10.1016/j.ijmachtools.2003.08.011

    Article  Google Scholar 

  3. Arias ER, Mecanico (1983) Analysis of surface roughness for end milling operations. M.S thesis, Texas Tech University, Lubbock, Texas, United States

  4. Palanisamy P, Rajendran I, Shanmugasundaram S (2007) Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. Int J Adv Manuf Technol 32:644–655. doi:10.1007/s00170-005-0384-3

    Article  Google Scholar 

  5. Martellotti ME (1941) An analysis of the milling process. Trans ASME 63:667

    Google Scholar 

  6. Quintana G, Ciurana J, Ribatallada J (2010) Surface roughness generation and material removal rate in ball end milling operations. Mater Manuf Process 25(6):386–398. doi:10.1080/15394450902996601

    Article  Google Scholar 

  7. Mansour A, Abdalla H (2002) Surface roughness model for end milling: a semi-free cutting carbon casehardening steel (EN 32) in dry condition. J Mater Process Technol 124(1–2):183–191. doi:10.1016/S0924-0136(02)00135-8

    Article  Google Scholar 

  8. Alauddin M, El Baradie MA, Hashmi MSJ (1997) Prediction of tool life in end milling by response surface methodology. J Mater Process Technol 71(3):456–465. doi:10.1016/S0924-0136(97)00111-8

    Article  Google Scholar 

  9. Chang H, Kim J, Kim IH, Jang DY, Han DC (2007) In-process surface roughness prediction using displacement signals from spindle motion. Int J Mach Tools Manuf 47(6):1021–1026. doi:10.1016/j.ijmachtools.2006.07.004

    Article  Google Scholar 

  10. Coker SA, Shin YC (1996) In-process control of surface roughness due to tool wear using a new ultrasonic system. Int J Mach Tools Manuf 36(3):411–422. doi:10.1016/0890-6955(95)00057-7

    Article  Google Scholar 

  11. Gologlu C, Sakarya N (2008) The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. J Mater Process Technol; 206(1–3):7–15. doi:10.1016/j.jmatprotec.2007.11.300

    Article  Google Scholar 

  12. Dhokia VG, Kumar S, Vichare P, Newman ST (2008) An intelligent approach for the prediction of surface roughness in ball-end machining of polypropylene. Robot Comput Integr Manuf; 24(6):835–842. doi:10.1016/j.rcim.2008.03.019

    Article  Google Scholar 

  13. Lou SJ, Chen JC (1999) In-process surface roughness recognition (ISRR) system in end-milling operations. Int J Adv Manuf Technol 15(3):200–209. doi:10.1007/s001700050057

    Article  Google Scholar 

  14. Tsai Y, Chen JC, Lou S (1999) An in-process surface recognition system based on neural networks in end milling cutting operations. Int J Mach Tools Manuf 39(4):583–605. doi:10.1016/S0890-6955(98)00053-4

    Article  Google Scholar 

  15. Benardos PG, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf 18(5–6):343–354. doi:10.1016/S0736-5845(02)00005–4

    Article  Google Scholar 

  16. Brecher C, Quintana G, Rudolf T, Ciurana J (2011) Use of NC kernel data for surface roughness monitoring in milling operations. Inter J Adv Manuf, Technol 53(9–12):953–962

    Article  Google Scholar 

  17. Chen JC, Lou MS (2000) Fuzzy-nets based approach using an accelerometer for in-process surface roughness prediction system in milling operations. J Comput Integr Manuf Syst 13(4):358–368. doi:10.1080/095119200407714

    Article  Google Scholar 

  18. Ali Y, Zhang L (1999) Surface roughness prediction of ground components using a fuzzy logic approach. J Mater Process Technol 89–90:561–568. doi:10.1016/S0924-0136(99)00022–9

    Article  Google Scholar 

  19. Zain AM, Haron H, Sharif S (2008). An overview of GA technique for surface roughness optimization in milling process. In IEEE proc inter symp on infor technol, IT Sim, 4: 1–6 doi: 10.1109/ITSIM.2008.4631925

  20. Brezocnik M, Kovacic M (2003) Integrated genetic programming and genetic algorithm approach to predict surface roughness. Mater Manuf Process 18(3):475–491. doi:10.1081/AMP-120022023

    Article  Google Scholar 

  21. Oktem H, Erzurumlu T, Erzincanli F (2006) Prediction of minimum surface roughness in end milling mold parts using neutral network and genetic algorithm. J Mater Des 27(9):735–744. doi:10.1016/j.matdes.2005.01.010

    Article  Google Scholar 

  22. Tansel IN, Ozcelik B, Bao WY, Chen P, Rincon D, Yang SY (2006) Selection of optimal cutting conditions by using GONNS. Int J Mach Tools Manuf 46(1):26–35. doi:10.1016/j.ijmachtools.2005.04.012

    Article  Google Scholar 

  23. Suresh PVS, VenkateswaraRao P, Deshmukh SG (2002) A genetic algorithmic approach for optimization of surface roughness prediction model. Int J Mach Tools Manuf 42(6):675–680. doi:10.1016/S0890-6955(02)00005-6

    Article  Google Scholar 

  24. Brezonick M, Kovavic M, Ficko M (2004) Prediction of surface roughness with genetic programming. J Mater Process Technol 157–158:28–36. doi:10.1016/j.jmatprotec.2004.09.004

    Article  Google Scholar 

  25. Colak O, Kurbanoglu C, Kayacan MC (2007) Milling surface roughness prediction using evolutionary programming methods. J Mater Des 28(2):657–666. doi:10.1016/j.matdes.2005.07.004

    Article  Google Scholar 

  26. Oktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170(1–2):11–16. doi:10.1016/j.jmatprotec.2005.04.096

    Article  Google Scholar 

  27. Bissey S, Poulachon G, Lapujoulade F (2007) Modelling of tool geometry in prediction of cutting force during milling of hard materials. Mach Sci Technol Int J 9(1):101–115. doi:10.1081/MST-200051376

    Article  Google Scholar 

  28. Zain AM, Haron H, Sharif S (2010) Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst Appl 37(6):4650–4659. doi:10.1016/j.eswa.2009.12.043

    Article  Google Scholar 

  29. AzlanMohdZain HH, Sharif S (2011) Integration of simulated annealing and genetic algorithm to estimate optimal solutions for minimizing surface roughness in end milling Ti-6AL-4 V. Int J Comput Int Manuf 24(6):574–592. doi:10.1080/0951192X.2011.566629

    Article  Google Scholar 

  30. Kaneeda (1991) TCFRP cutting mechanism. Trans N Am Manuf Res Inst SME 19:216–221

    Google Scholar 

  31. Kim Y-H, Ko S-L (2002) Development of design and manufacturing technology for end mill in machining hardened steel. J Mater Process Technol 130–131:653–661. doi:10.1016/S0924-0136(02)00728-8

    Article  Google Scholar 

  32. Suresh Kumar Reddy N, Venkateswara Rao P (2005) Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling. Int J Adv Manuf Technol 26(11–12):1202–1210. doi:10.1007/s00170-004-2110-y

    Article  Google Scholar 

  33. Suresh Kumar Reddy N, Venkateswara Rao P (2006) Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. Int J Mach Tools Manuf 46:189–198. doi:10.1016/j.ijmachtools.2005.04.008

    Article  Google Scholar 

  34. Suresh Kumar Reddy N, Venkateswara Rao P (2007) A genetic algorithmic approach for optimization of surface roughness prediction model in dry milling. Mach Sci Technol Int J 9(1):63–84. doi:10.1081/MST-200051263

    Article  Google Scholar 

  35. Yesilyurt I (2006) End mill breakage detection using mean frequency analysis of scalogram. Int J Mach Tools Manuf 46(3–4):450–458. doi:10.1016/j.ijmachtools.2005.03.014

    Article  Google Scholar 

  36. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman Publishing Co, Inc, Boston

    MATH  Google Scholar 

  37. Bernardos PG, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43(8):833–844. doi:10.1016/S0890-6955(03)00059-2

    Article  Google Scholar 

  38. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  39. Cochran WG, Cox GM (1957) Experimental designs. Wiley, New York

    MATH  Google Scholar 

  40. Sivasakthivel PS, VelMurugan V, Sudhakaran R (2011) Prediction of vibration amplitude from machining parameters by response surface methodology in end milling. Int J Adv Manuf Technol 53(5–8):453–461. doi:10.1007/s00170-010-2872-3

    Article  Google Scholar 

  41. Sivasakthivel PS, Sudhakaran R (2013) Optimization of machining parameters on temperature rise in end milling of Al 6063 using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 67(9–12):2313–2323. doi:10.1007/s00170-012-4652-8

    Article  Google Scholar 

  42. Hindustan Machine Tools (HMT) (2001) Production technology, Tata McGraw-Hill Education

  43. Kannan T, Murugan N (2006) Prediction of ferrite number of duplex stainless steel clad metals using RSM. Weld J (AWS) 85(5):91–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mahesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, G., Muthu, S. & Devadasan, S.R. Prediction of surface roughness of end milling operation using genetic algorithm. Int J Adv Manuf Technol 77, 369–381 (2015). https://doi.org/10.1007/s00170-014-6425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6425-z

Keywords

Navigation