Skip to main content

Cuckoo optimization algorithm for unit production cost in multi-pass turning operations

This article was retracted on 29 March 2017

Abstract

The multi-pass turning process is one of the most used machining methods in manufacturing industry. The minimization of the unit production cost is considered the key objective of this operation. In this work, the cutting parameters are carried out using a recently developed advanced bio-inspired optimization algorithm, called the cuckoo optimization algorithm (COA). The obtained results are compared with previously published results available in the literature. It has been proven that the COA competes robustly with a wide range of optimization algorithms.

This is a preview of subscription content, access via your institution.

References

  1. Zadshakoyan M, Pourmostaghimi V (2013) Genetic equation for the prediction of tool-chip contact length in orthogonal cutting. Eng Appl Artif Intell 26(7):1725–1730

    Article  Google Scholar 

  2. Rao RD, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26(1):524–531

    Article  Google Scholar 

  3. Venkata Rao R, Kalyankar VD (2013) Multi-pass turning process parameter optimization using teaching-learning-based optimization algorithm. Scientia Iranica 20(3):967–974

    Google Scholar 

  4. Shin YC, Joo YS (1992) Optimization of machining conditions with practical constraints. Int J Prod Res 30(12):2907–2919

    Article  Google Scholar 

  5. Chen MC, Tsai DM (1996) A simulated annealing approach for optimization of multi-pass turning operations. Int J Prod Res 34(10):2803–2825

    Article  MATH  Google Scholar 

  6. Onwubolu GC, Kumalo T (2001) Optimization of multi-pass turning operations with genetic algorithms. Int J Prod Res 39(16):3727–3745

    Article  MATH  Google Scholar 

  7. Srinivas J, Giri R, Yang SH (2009) Optimization of multi-pass turning using particle swarm intelligence. Int J Adv Manuf Technol 40(1–2):56–66

    Article  Google Scholar 

  8. Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci 220:399–407

    MathSciNet  Article  Google Scholar 

  9. Costa A, Celano G, Fichera S (2011) Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. Int J Adv Manuf Technol 53(5–8):421–433

    Article  Google Scholar 

  10. Crookall JR, Venkataramani N (1971) Computer optimization of multi-pass turning. Int J Prod Res 9(2):247–259

    Article  Google Scholar 

  11. Iwata K, Iwatsubo T, Fujii S, Iwatsubo Y (1972) A probabilistic approach to the determination of the optimum cutting conditions. J Eng Ind 94(4):1099–1107

    Article  Google Scholar 

  12. Ermer DS, Kromodihardjo S. Optimization of multipass turning with constraints. Journal of Engineering for Industry Transactions of the ASME 1981;103(4):462–468

  13. Alberti N. Optimization of multi-pass turning, in: Proceedings of the 14th North American Manufacturing Research Conference, USA, 1986

  14. Gopalakrishnan B, Al-Khayyal F (1991) Machine parameter selection for turning with constraints: an analytical approach based on geometric programming. Int J Prod Res 29(9):1897–1908

    Article  MATH  Google Scholar 

  15. Chen MC, Su ST (1998) Optimization of machining conditions for turning cylindrical stocks into continuous finished profiles. Int J Prod Res 36(8):2115–2130

    Article  MATH  Google Scholar 

  16. Gupta R, Batra JL, Lal GK (1995) Determination of optimal subdivision of depth of cut in multi-pass turning with constraints. Int J Prod Res 33(9):2555–2565

    Article  MATH  Google Scholar 

  17. Chen MC, Chen KY (2003) Optimization of multi-pass turning operations with genetic algorithms: a note. Int J Prod Res 41(14):3385–3388

    Article  Google Scholar 

  18. Aryanfar A, Solimanpur M (2012) Optimization of multi-pass turning operations using genetic algorithms, in: Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management. Istanbul, Turkey

    Google Scholar 

  19. Vijayakumar K, Prabhaharan G, Asokan P, Saravanan R (2003) Optimization of multi-pass turning operations using ant colony system. Int J Mach Tools Manuf 43(15):1633–1639

    Article  Google Scholar 

  20. Wang YC (2007) A note on ‘optimization of multi-pass turning operations using ant colony system’. Int J Mach Tools Manuf 47(12–13):2057–2059

    Article  Google Scholar 

  21. Zheng LY, Ponnambalam SG (2010) A hybrid GA-AIS heuristic for optimization of multi-pass turning operations. In: Intelligent robotics and applications. Springer Berlin Heidelberg, Germany, pp 599–611

    Chapter  Google Scholar 

  22. Saravanan R, Siva Sankar R, Asokan P, Vijayakumar K, Prabhaharan G (2005) Optimization of cutting conditions during continuous finished profile machining using non-traditional techniques. Int J Adv Manuf Technol 26(1–2):30–40

    Article  Google Scholar 

  23. Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci 210:81–88

    Article  Google Scholar 

  24. Yildiz AR (2013) Hybrid Taguchi differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433–1439

    Article  Google Scholar 

  25. Yildiz AR (2013) Optimization of multi-pass turning operations using hybrid teaching learning based approach. Int J Adv Manuf Technol 66(9–12):1319–1326

    Article  Google Scholar 

  26. Belloufi A, Assas M, Rezgui I. Intelligent selection of machining parameters in multi-pass turnings using firefly algorithm. Modeling and Simulation in Engineering 2013; In Press

  27. Belloufi A, Assas M, Rezgui I (2012) Optimization of cutting conditions in multi-pass turning using hybrid genetic algorithm-sequential quadratic programming. J Appl Mech Eng 1(1):3–7

    Article  Google Scholar 

  28. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518

    Article  Google Scholar 

  29. Mellal MA, Adjerid S, Williams EJ (2013) Optimal selection of obsolete tools in manufacturing systems using cuckoo optimization algorithm. Chem Eng Trans 33:355–360

    Google Scholar 

  30. Mellal MA, Adjerid S, Williams EJ, Benazzouz D (2012) Optimal replacement policy for obsolete components using cuckoo optimization algorithm based approach: Dependability context. J Sci Ind Res 71(11):715–721

    Google Scholar 

  31. Rabiee M, Sajedi H (2013) Job scheduling in grid computing with cuckoo optimization algorithm. Int J Comput Appl 62(16):38–44

    Google Scholar 

  32. Addeh J, Ebrahimzadeh A, Azarbad M, Ranaee V. Statistical process control using optimized neural networks: A case study. ISA Transactions 2013;DOI: 10.1016/j.isatra.2013.07.018

  33. Sahab AR, Ziabari MT, Modabbernia MR (2012) A novel fractional-order hyperchaotic system with a quadratic exponential nonlinear term and its synchronization. Adv Differ Equ 2012:1–21

    MathSciNet  Article  Google Scholar 

  34. Teimouri R, Sohrabpoor H (2013) Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process. Front Mech Eng 8(4):429–442

    Article  Google Scholar 

  35. Mellal MA, Williams EJ. Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic. Journal of Intelligent Manufacturing 2014;DOI: 10.1007/s10845-014-0925-4

  36. Roozitalab A, Asgharizadeh E (2013) Optimizing the warranty period by cuckoo meta−heuristic algorithm in heterogeneous customers’ population. J Ind Eng Int 9(27):1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Arezki Mellal.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00170-017-0314-1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mellal, M.A., Williams, E.J. Cuckoo optimization algorithm for unit production cost in multi-pass turning operations. Int J Adv Manuf Technol 76, 647–656 (2015). https://doi.org/10.1007/s00170-014-6309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6309-2

Keywords

  • Multi-pass turning operations
  • Cutting parameters
  • Unit production cost
  • Cuckoo optimization algorithm