Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting


Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of laser energy density on 316L stainless steel properties. Point distance and exposure time were varied and their impact on porosity, surface finish, microstructure, density and hardness, was evaluated. The surface roughness was primarily affected by point distance with increased point distance resulting in increased surface roughness, R a, from 10 to 16 μm. Material hardness reached a maximum of 225 HV at 125 J/mm3 and was related to the material porosity; with increased porosity leading to decreased material hardness. Different types of particle coalescence leading to convex surface features were observed (sometimes referred to as balling); from small ball features at low laser energy density to a mixture of both small and large ball features at high laser energy density. Laser energy density was shown to affect total porosity. The minimum amount of porosity, 0.38 %, was observed at an energy density of 104.52 J/mm3.

This is a preview of subscription content, log in to check access.


  1. 1.

    Kruth J P, Badrossamay M, Yasa E, Deckers J, Thijs L, Humbeeck J V (2010) Part and material properties in selective laser melting of metals, in 16th International symposium on electromachining (ISEM XVI), doi:

  2. 2.

    Paul BK, Baskaran S (1996) Issues in fabricating manufacturing tooling using powder-based additive freeform fabrication. J Mater Process Technol 61:168–172. doi:10.1016/0924-0136(96)02482-X

    Article  Google Scholar 

  3. 3.

    Hao L, Dadbakhsh S, Seaman O, Felstead M (2009) Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Technol 209:5793–5801. doi:10.1016/j.jmatprotec.2009.06.012

    Article  Google Scholar 

  4. 4.

    Mathisen M B (2012) "In-situ tensile testing combined with EBSD analysis of Ti-6Al-4V samples from components fabricated by additive layer manufacture," Materials Science and Engineering, Submitted June 2012, doi:

  5. 5.

    Su X, Yang Y (2012) Research on track overlapping during selective laser melting of powders. J Mater Process Technol 212:2074–2079. doi:10.1016/j.jmatprotec.2012.05.012

    Article  Google Scholar 

  6. 6.

    Gebhardt A, Schmidt FM, Hotter JS, Sokalla W, Sokalla P (2010) "Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry," in Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 2, doi:

  7. 7.

    Chatterjee AN, Kumar S, Saha P, Mishra PK, Choudhury AR (2003) An experimental design approach to selective laser sintering of low carbon steel. J Mater Process Technol 136:151–157. doi:10.1016/S0924-0136(03)00132-8

    Article  Google Scholar 

  8. 8.

    Kruth JP, Froyen L, Vaerenbergh JV, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powders. J Mater Process Technol 149:616–622. doi:10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  9. 9.

    Wang Z, Guan K, Gao M, Li X, Chen X, Zeng X (2012) The microstructure and mechanical properties of deposited-IN718 by selective. J Alloys Compd 513:518–523. doi:10.1016/j.jallcom.2011.10.107

    Article  Google Scholar 

  10. 10.

    Mumtaz KA, Erasenthiran P, Hopkinson N (2008) High density selective laser melting of Waspaloy. J Mater Process Technol 195:77–87. doi:10.1016/j.jmatprotec.2007.04.117

    Article  Google Scholar 

  11. 11.

    Liu F, Lin X, Huang C, Song M, Yang G, Chen J, Huang W (2011) The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J Alloys Compd 509(13):4505–4509. doi:10.1016/j.jallcom.2010.11.176

    Article  Google Scholar 

  12. 12.

    Simchi A (2006) Direct laser sintering of metal powders mechanism, kinetics and microstructural features. Mater Sci Eng A 428:148–158. doi:10.1016/j.msea.2006.04.117

    Article  Google Scholar 

  13. 13.

    Ekrami Y, Forth S C and Waid M C, "Characterization of electron beam free-form fabricated 2219 aluminum and 316 stainless steel", Technical Report, NASA, USRP, doi:

  14. 14.

    Yasa E, Kruth JP (2011) Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng 19:389–395. doi:10.1016/j.proeng.2011.11.130

    Article  Google Scholar 

  15. 15.

    Gu D, Shen Y (2009) Balling phenomenon in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30:2903–2910. doi:10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  16. 16.

    Tolchko NK, Mozzharov SE, Yadroitsev IA, Laoui T, Froyen L, Titov VI, Ignatiev MB (2004) Balling process during selective laser treatment of powders. Rapid Prototyp J 10(2):78–87. doi:10.1108/13552540410526953

    Article  Google Scholar 

  17. 17.

    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987. doi:10.1016/j.jmatprotec.2010.12.016

    Article  Google Scholar 

  18. 18.

    Li Z, Mukai K, Zeze M, Mills KC (2005) Determination of the surface tension of liquid stainless steel. J Mater Sci 40:2191–2195. doi:10.1007/s10853-005-1931-x

    Article  Google Scholar 

  19. 19.

    Li R, Liu J, Shi Y, Wang L, Jiang W (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol 59:1025–1035. doi:10.1007/s00170-011-3566-1

    Article  Google Scholar 

  20. 20.

    Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. Gold Bull 43(2):114–121. doi:10.1007/BF03214976

    Article  Google Scholar 

  21. 21.

    Li R, Shi Y, Wang Z, Wang L, Liu J, Jiang W (2010) Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl Surf Sci 256:4350–4356. doi:10.1016/j.apsusc.2010.02.030

    Article  Google Scholar 

  22. 22.

    Simchi A (2008) Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process. Mater Lett 62:2840–2843. doi:10.1016/j.matlet.2008.01.113

    Article  Google Scholar 

  23. 23.

    Campanelli SL, Contuzzi N, Angelastro A, Ludovico AD (2010) Capabilities and performances of the selective laser melting process, new trends in technologies: devices, computer, communication and industrial systems, M. J. Er, Ed., Open Access Book, DOI:

  24. 24.

    Taha MA, Yousef AF, Gany KA, Sabour HA (2012) On selective laser melting of ultra high carbon steel: effect of scan speed and post heat treatment. Mat wiss u werkstofftech 43(11):913–923. doi:10.1002/mawe.201200030

    Article  Google Scholar 

  25. 25.

    Zhang B, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater Des 34:753–758. doi:10.1016/j.matdes.2011.06.061

    Article  Google Scholar 

  26. 26.

    Tolosa I, Garciandia F, Zapirain F, Zubiri F, Esnaola A (2010) Study of mechanical properties of AISI 316 stainless steel processed by "selective laser melting", following different manufacturing strategies. Int J Adv Manuf Technol 51:639–647. doi:10.1007/s00170-010-2631-5

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. A. Cherry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherry, J.A., Davies, H.M., Mehmood, S. et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2015).

Download citation


  • Additive manufacture
  • Microstructure
  • 316L Stainless steel
  • Porosity
  • Laser energy
  • Selective laser melting