Integrated system for analyzing maintenance records in product improvement

Abstract

This paper presents the development and realization of the “Integrated system for analyzing Maintenance records in Product improvement” (IMaPro). IMaPro has been designed based on research and need analysis through literature survey and consultation with industry partners in Germany. The primary goal is to analyze structured feedback data, such as condition monitoring, service, and customer data, especially to discover improvement potentials in maintenance management and ultimately product improvement. In this context, Bayesian network utilizes the knowledge-based analysis of feedback data. The Bayesian network is used in combination of a mathematical cost model. The model supports cost-based monitoring and controlling of maintenance activities, and consequently leads to the identification of the lack and applying the lessons learned for improving maintenance costing. The concept has been validated and pilot-tested through the use of a sample product, namely block heater system. Furthermore, IMaPro incorporates an in-house development of mobile application for acquisition of service data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abramovici M, Lindner A, Walde F, Fathi M, Dienst S (2011) "Decision support for improving the design of hydraulic systems by leading feedback into product development," in Proceedings of the 18th International Conference on Engineering Design 2011 (ICED11). Denmark Technical University, Kopenhagen

    Google Scholar 

  2. 2.

    (2003) DIN_31051, Grundlagen der Instandhaltung. Berlin, Beuth Verlag GmbH

  3. 3.

    (2001) DIN_EN_13306, Begriffe der Instandhaltung; Dreisprachige Fassung EN 13306:2001, Beuth-Verlag

  4. 4.

    Dhillon BS (2002) Engineering Maintenance-A Modern Approach. Florida, USA: CRC Press LLC

  5. 5.

    Levitt J (2009) Handbook of Maintenance Management, 2nd edn. Industrial Press Inc., USA

    Google Scholar 

  6. 6.

    Schulte S (2007) Integration von Kundenfeedback in die Produktentwicklung zur Optimierung der Kundenzufriedenheit. Shaker Verlag, Aachen

    Google Scholar 

  7. 7.

    Ansari F, Dienst S, Uhr P, Fathi M (2011) "Using data analysis for discovering improvement potentials in production process," in Joint IEEE International Conference on Industrial Electronics (IEEE ICIT 2011). Auburn, Alabama

    Google Scholar 

  8. 8.

    Baars H, Kemper H (2008) Management support with structured and unstructured data—an integrated business intelligence framework. Inf Syst Manag 25:132–148

    Article  Google Scholar 

  9. 9.

    Dienst S, Uhr P, Klahold A, Fathi M, Lindner A, Abramovici M (2012) "Concept for Improving Industrial Goods via Contextual Knowledge Provision," in Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies (IKnow2012). Graz

  10. 10.

    Uhr P, Dienst S, Klahold A, Fathi M (2012) "Kontextbasierte Bereitstellung von Textdokumenten im Produktverbesserungsprozess*," Journal wt Werkstattstechnik online, 7/8 2012, Springer-VDI-Verlag GmbH & Co. KG, p 528-534

  11. 11.

    Ansari F, Uhr P, Fathi M (2014) Textual meta-analysis of maintenance management’s knowledge assets. Int J Serv Econ Manag 6:14–37

    Google Scholar 

  12. 12.

    Mirghani MA (2009) "Guidelines for Budgeting and Costing Planned Maintenance Services," in Handbook of Maintenance Management and Engineering. In: Ben-Daya M, Duffuaa S, Raouf A, Knezevic J, Ait-Kadi D (Eds), 1st edn. Berlin, Springer, p 115-132

  13. 13.

    Hahn D, Laßman G (1993) In Produktionswirtschaft- Controlling industrieller Produktion. vol. 3.1, Heildelberg, Physica-Verlag, p. 353.

  14. 14.

    Tempest P (1976) "A Model of Industrial Maintenance Control," in Journal of Production Engineer. IEEE Press, 55

  15. 15.

    Newbrough E (1967) Effective Maintenance Management, McGraw-Hill Education. p 61.

  16. 16.

    Wireman T (2004) Total productive maintenance, 2nd edn. Industrial Press, New York

    Google Scholar 

  17. 17.

    Mobley R (2008) Maintenance Engineering Handbook. In: Mobley R, Higgins L, Wikoff D (Eds), 7 edn. Mc Graw Hill

  18. 18.

    Stevenson WJ (2012) Operations management: theory and practice, 11th edn. McGraw-Hill Irwin, New York

    Google Scholar 

  19. 19.

    Fei R (2008) "Maintenance Engineering Handbook,". Mobley RHLaWD (Ed), 7 edn. Mc Graw Hil

  20. 20.

    Rausand M, Høyland A (2003) System reliability theory: models, statistical methods, and applications, 2nd edn. Wiley, USA

    Google Scholar 

  21. 21.

    (1993) VDI_2221, Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Berlin, Beuth Verlag

  22. 22.

    Ehrlenspiel K, Meerkamm H (2013) Integrierte Produktentwicklung – Denkabläufe, Methodeneinsatz, Zusammenarbeit, 5th edn. Carl Hanser Verlag GmbH & Co. KG, München

    Book  Google Scholar 

  23. 23.

    Pahl G, Beitz W, Feldhusen J, Grote K (2006) Konstruktionslehre – Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendungen. Springer Verlag, Berlin

    Google Scholar 

  24. 24.

    Ehrlenspiel K (2007) Integrierte Produktentwicklung – Denkabläufe, Methodeneinsatz, Zusammenarbeit, München. Carl Hanser Verlag, Wien

    Google Scholar 

  25. 25.

    Ponn J, Lindemann U (2011) Konzeptentwicklung und Gestaltung technischer Produkte - Systematisch von Anforderungen zu Konzepten und Gestaltlösungen, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  26. 26.

    Lindemann U (2009) Methodische Entwicklung technischer Produkte - Methoden flexibel und situationsgerecht anwenden. Springer, Berlin

    Book  Google Scholar 

  27. 27.

    Wosnitza F, Hilgers H (2012) Energieeffizienz und Energiemanagement - Ein Überblick heutiger Möglichkeiten und Notwendigkeiten. Vieweg+Teubner Verlag | Springer Fachmedien, Wiesbaden

    Google Scholar 

  28. 28.

    Viessmann Werke GmbH & Co. KG, "Viessmann climate of innovation," 29. August 2012. [Online]. Available: www.viessmann.com. [Accessed 29. July 2014].

  29. 29.

    Richter M, Dietz T, Fischer D, Fränzel A, Freitag H, Knochenhauer H.-P, Schwalm H, Seidel A, Uhlmann M (2010) Produkt-Beschreibung zu: Verfügbarkeit von höchstpräzisen mechatronischen Montageanlagen (VerMont). Apprimus Wissenschaftsver, Aachen, ISBN-10: 3940565962

  30. 30.

    Gluchowski P, Gabriel R, Pastwa A (2009) Data Warehouse & Data Mining. W3L GmbH, Herdecke

    Google Scholar 

  31. 31.

    Bauer A, Günzel H (2013) Data Warehouse Systeme - Architektur, Entwicklung, Anwendung. dpunkt Verlag, Heidelberg

    Google Scholar 

  32. 32.

    Inmon W (2002) Building the Data Warehouse. New York

  33. 33.

    Dienst S, Fathi M, Abramovici M, Lindner A (2011) "A Conceptual Data Management Model of a Feedback Assistance System to support Product Improvement," in IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC 2011). Anchorage

  34. 34.

    Bouman R, Dongen J (2009) Pentaho solutions—business intelligence and data warehousing with Pentaho and MySQL. Wiley Publishing, Inc., Indianapolis

    Google Scholar 

  35. 35.

    Reibold H (2010) Pentaho kompakt, Brain-Media.de

  36. 36.

    Schmidt O (2011) Design and implementation of a prototype of a mobile Software based on efficient acquisition and leading back of objective service data in the context of the WiRPro project (diplomthesis). Universität Siegen, Siegen

    Google Scholar 

  37. 37.

    Bollmann T, Zeppenfeld K (2010) Mobile Computing. W3L-Verlag, Herdecke

    Google Scholar 

  38. 38.

    Finger P, Zeppenfeld K (2009) SOA und WebServices. Springer, Berlin

  39. 39.

    Ansari F, Fathi M, Seidenberg U (2012) "Developing an Algebraic Model for Administrating Preventive Maintenance Cost of Production Machines," in Proceedings of 4th World Conference on Production & Operations Management and the 19th International Annual EurOMA Conference. University of Amsterdam, The Netherlands

  40. 40.

    Dienst S, Ansari F, Holland A, Fathi M (2010) "Applying Fusion Techniques to graphical Methods for Knowledge based processing of Product Use Information," in 2nd International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2010), Valencia

  41. 41.

    Dienst S, Ansari F, Holland A, Fathi M (2010) "Necessity of Using Dynamic Bayesian Networks for Feedback Analysis into Product Development," in In: 2010 I.E. International Conference on Systems, Man and Cybernetics (IEEE SMC 2010), Istanbul

  42. 42.

    Jiang X, Cooper C (2010) A real-time temporal Bayesian architecture for event surveillance and its application to patient-specific multiple disease outbreak detection. Data Min Knowl Disc 20:328–360

    Article  MathSciNet  Google Scholar 

  43. 43.

    Jensen F, Nielsen T (2007) Bayesian Networks and Decision Graphs. Statistics for Engineering and Information Science, BerlinHeidelberg New York, Springer-Verlag

  44. 44.

    Jordan M (1999) Learning in graphical models. MIT Press, Cambridge

    Google Scholar 

  45. 45.

    Russell S, Norvig P (2009) Artificial intelligence: a modern approach. Prentince Hall International, USA

    Google Scholar 

  46. 46.

    Pourret O, Naïm P, Marcot B (2008) Bayesian networks: a practical guide to applications, West Sussex. John Wiley & Sons, England

    Book  Google Scholar 

  47. 47.

    (2007) Ben-Gal, "Bayesian Networks," in Encyclopedia of Statistics in Quality and Reliability. John Wiley & Sons, UK

  48. 48.

    Borgelt C, Kruse R (2002) Graphical models. Methods for data analysis and mining, West Sussex. John Wiley & Sons, United Kingdom

    Google Scholar 

  49. 49.

    Salini S, Kenett R (2009) Bayesian networks of customer satisfaction survey data. J Appl Stat 36:1177–1189

    Article  MathSciNet  Google Scholar 

  50. 50.

    Alpaydin E (2010) Introduction to Machine Learning. In: L. Cambridge (Massachusetts), 2. edn. Massachusetts Institute of Technology - MIT Press

  51. 51.

    Witten I, Frank E, Hall M (2011) Data Mining: Practical Machine Learning Tools and Techniques. In: M. K. S. i. D. M. Systems (Ed) 3. edn. Elsvier, Burlington

  52. 52.

    Murphy K (2002) Dynamic Bayesian Networks: Representation, inference and Learning. Phd Thesis., UC Berkeley, Computer Science Division

  53. 53.

    Shi D, You J (2007) "Adaptive dynamic probabilistic networks for distributed uncertainty processing," J Exp Theor Artificial Intell pp. 269-284

  54. 54.

    Johnson S (2009) Integrated Bayesian networks frameworks for modelling ecological issues. University of Technology, Queensland

    Google Scholar 

  55. 55.

    A. HUGIN EXPERT, "Hugin," 2012. [Online]. Available: http://www.hugin.com/. [Accessed 29. July 2014].

  56. 56.

    Abramovici M, Lindner A, Dienst S, Fathi M (2013) "Predicting the behavior of solution alternatives within product improvement processes," in Proceedings of the 19th International Conference on Engineering Design 2013 (ICED13). Seoul

  57. 57.

    Bouckaert R (2008) Bayesian network classifiers in WEKA. University of Waikto, Australia

    Google Scholar 

  58. 58.

    Ertel W (2013) Grundkurs Künstliche Intelligenz - Eine praxisorientierte Einführung. Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden

    Book  Google Scholar 

  59. 59.

    T. Loboda and M. Voortman, "GeNie & Smile," 2012. [Online]. Available: http://genie.sis.pitt.edu/. [Accessed 29. July 2014].

  60. 60.

    Ehrlenspiel K, Kiewert A, Lindemann U (2014) Kostengünstig Entwickeln und Konstruieren: Kostenmanagement bei der integrierten Produktentwicklung (VDI-Buch). Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanne Dienst.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dienst, S., Ansari, F. & Fathi, M. Integrated system for analyzing maintenance records in product improvement. Int J Adv Manuf Technol 76, 545–564 (2015). https://doi.org/10.1007/s00170-014-6228-2

Download citation

Keywords

  • Product improvement
  • Maintenance management
  • Feedback analysis
  • Cost model
  • Bayesian network
  • Mobile application
  • Monitoring
  • Decision-making