Skip to main content
Log in

Thermal modeling of friction stir welding of stainless steel 304L

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a numerical model, based on the displacement of one point of the material flow relative to a fixed reference point, in order to formulate the heat generation during friction stir process and thereby calculate the temperature difference between advancing and retreating sides. This model considers frictional heating dependent on both the temperature and the velocity of the tool, as well as heat generation due to plastic deformation dependent on temperature, and assumes that friction heat at high temperature was replaced by heat generation due to plastic deformation. The heat generated by plastic strain energy dissipation in thermomechanically affected zone is calculated by a new technique, and the convection heat transfer coefficient and the sticking state parameter are considered as a function of temperature. Finally, the thermal equations are solved using a nonlinear finite element code ABAQUS. The numerical results correctly showed the asymmetric nature of temperature distributed at different sides of the weld line which have good agreement with experimental data that are presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction stir butt welding. International Patent Application No.PCT/GB92102203 and Great Britain Patent Application No. 9125978.8

  2. Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev 56(1):1–48. doi:10.1179/095066010X12777205875750

    Article  Google Scholar 

  3. Arora HS, Singh H, Dhindaw BK (2012) Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing. Mater Sci Eng A 543:231–242. doi:10.1016/j.msea.2012.02.081

    Article  Google Scholar 

  4. Sonne MR, Tutum CC, Hattel JH, Simar A, de Meester B (2013) The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3. J Mater Process Technol 213(3):477–486. doi:10.1016/j.jmatprotec.2012.11.001

    Article  Google Scholar 

  5. Schmidt HB, Hattel JH (2008) Thermal modelling of friction stir welding. Scr Mater 58(5):332–337. doi:10.1016/j.scriptamat.2007.10.008

    Article  Google Scholar 

  6. Ferro P, Bonollo F (2010) A semianalytical thermal model for fiction stir welding. Metall Mat Trans A 41(2):440–449. doi:10.1007/s11661-009-0104-y

    Article  Google Scholar 

  7. Al-Badour F, Merah N, Shuaib A, Bazoune A (2013) Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J Mater Process Technol 213(8):1433–1439. doi:10.1016/j.jmatprotec.2013.02.014

    Article  Google Scholar 

  8. Albakri AN, Mansoor B, Nassar H, Khraisheh MK (2013) Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—a numerical and experimental investigation. J Mater Process Technol 213(2):279–290. doi:10.1016/j.jmatprotec.2012.09.015

    Article  Google Scholar 

  9. Pan W, Li D, Tartakovsky AM, Ahzi S, Khraisheh M, Khaleel M (2013) A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204. doi:10.1016/j.ijplas.2013.02.013

    Article  Google Scholar 

  10. Cho HH, Hong ST, Roh JH, Choi HS, Kang SH, Steel RJ, Han HN (2013) Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Mater 61(7):2649–2661. doi:10.1016/j.actamat.2013.01.045

    Article  Google Scholar 

  11. Zhu XK, Chao YJ (2004) Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol 146(2):263–272. doi:10.1016/j.jmatprotec.2003.10.025

    Article  Google Scholar 

  12. Khandkar MZH, Khan JA, Reynolds AP, Sutton MA (2006) Predicting residual thermal stresses in friction stir welded metals. J Mater Process Technol 174(1–3):195–203. doi:10.1016/j.jmatprotec.2005.12.013

    Article  Google Scholar 

  13. Simar A, Pardoen T, de Meester B (2007) Effect of rotational material flow on temperature distribution in friction stir welds. Sci Technol Weld Join 12(4):324–333. doi:10.1179/174329307X197584

    Article  Google Scholar 

  14. Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895. doi:10.1016/j.actamat.2006.09.009

    Article  Google Scholar 

  15. Nandan R, Roy GG, Lienert TJ, DebRoy T (2006) Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Science Technology Welding Joining 11(5):526–537. doi:10.1179/174329306X107692

    Article  Google Scholar 

  16. He Y, Boyce DE, Dawson PR (2007) Three-dimensional modeling of void growth in friction stir welding of stainless steel. Int Conf Numer Methods Ind Form Process 908(1):25–34. doi:10.1063/1.2740787

    Google Scholar 

  17. Prasanna P, Rao BS, Rao GK (2010) Finite element modeling for maximum temperature in friction stir welding and its validation. Int J Adv Manuf Technol 51(9–12):925–933. doi:10.1007/s00170-010-2693-4

    Article  Google Scholar 

  18. Avallone E, Baumeister T (1996) Marks’ standard handbook for mechanical engineers. McGraw-Hill Professional, New York

    Google Scholar 

  19. Johnson RL, Bisson EE (1955) Bearings and lubricants for aircraft turbine engines. SAE Tech Paper 550014 63(6):60–64. doi:10.4271/550014

    Google Scholar 

  20. Committee ASMIH (1990) ASM handbook, volume 02—properties and selection: nonferrous alloys and special-purpose materials, vol 2. ASM International, Materials Park

    Google Scholar 

  21. Li W-Y, Ma T, Li J (2010) Numerical simulation of linear friction welding of titanium alloy: effects of processing parameters. Mater Des 31(3):1497–1507. doi:10.1016/j.matdes.2009.08.023

    Article  Google Scholar 

  22. Ji S-D, Liu J-G, Yue Y-M, Lü Z, Fu L (2012) 3D numerical analysis of material flow behavior and flash formation of 45# steel in continuous drive friction welding. Trans Nonferrous Metals Soc China 22(Supplement 2 (0)):s528–s533. doi:10.1016/S1003-6326(12)61756-7

    Article  Google Scholar 

  23. Brickstad B, Josefson BL (1998) A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. Int J Press Vessel Pip 75(1):11–25. doi:10.1016/S0308-0161(97)00117-8

    Article  Google Scholar 

  24. Iranmanesh M, Darvazi AR (2008) Analytical and numerical simulation of temperature field and residual stresses of butt weld in steel plates used in ship manufacturing. Asian J Appl Sci 1:70–78. doi:10.3923/ajaps.2008.70.78

    Article  Google Scholar 

  25. ABAQUS/CAE user’s manual: version 6.10 (2010). ABAQUS Inc, Pawtucket

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Rahmati Darvazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvazi, A.R., Iranmanesh, M. Thermal modeling of friction stir welding of stainless steel 304L. Int J Adv Manuf Technol 75, 1299–1307 (2014). https://doi.org/10.1007/s00170-014-6203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6203-y

Keywords

Navigation