Skip to main content

Investigation into a geometry-based model for surface roughness prediction in vibratory finishing processes


The machining process vibratory finishing is used to improve the topology of workpiece surfaces. Typically, surface roughness improves until a steady-state is reached. In this state, material will be removed but roughness remains relatively stable. Consequently, the focus of this paper is set on the so-called transient period of vibratory finishing. A new approach is presented to predict the roughness change after a given process time. In contrast to past approaches concentrating on mass or diameter loss of the workpiece, the model is based on geometric changes of the roughness-profile during the transient period of vibratory finishing. This model can be used to estimate process times needed to achieve a desired roughness of a workpiece.

This is a preview of subscription content, access via your institution.


  1. DIN 8580, 2003. Manufacturing processes - terms and definitions, division.

  2. DIN8589-17, 2003. Manufacturing processes chip removal - Part 17: barrel polishing; classification, subdivision, terms and definitions.

  3. Uhlmann, E.; Dethlefs, A, 2011.: Polieren komplexer Bauteile. WB Werkstatt + Betrieb 6, p. 28–31.

  4. Gillespie LK (2007) Mass finishing handbook, 1st edn. Industrial Press, New York

    Google Scholar 

  5. Uhlmann, E., Hasper, G., Mihotovic, V., 2011. Verfahren und Vorrichtung zum Gleitspanen eines Werkstücks. Patent DE 10 2009 024 313 Published Patent Application (2011-01-05). Fraunhofer Gesellschaft, TU Berlin

  6. Arvin, J., 2002: The effect of chemically accelerated vibratory finishing on gear metrology. AGMA Technical Paper, 11–16.

  7. Davidson, D., 2008: Vibratory finishing: versatile, effective and reliable. Metalfinishing 106 5, 30–34.

  8. Gather D (2008) Future perspectives of mass finishing. MFN Metal Finishing News 9

  9. Löhnert, V., 2006: Innovative Gleitschlifftechnik - praxisorientierte Bearbeitungslösungen. In: 6. Seminar Moderne Schleiftechnologie und Feinstbearbeitung. Ed.: Tawakoli, T.,11-1 - 11–26.

  10. Hashimoto F (1996) Modelling and optimization of vibratory finishing process. Annals of the CIRP 45(1):303–306. doi:10.1016/S0007-8506(07)63068-6

    Article  Google Scholar 

  11. Domblesky J, Cariapa V, Evans R (2003) Investigation of vibratory bowl finishing. Int J Prod Res 41(16):3943–3953. doi:10.1080/0020754031000152550

    Article  Google Scholar 

  12. Domblesky J, Evans R, Cariapa V (2004) Material removal model for vibratory finishing. Int J Prod Res 42(5):1029–1042. doi:10.1080/00207540310001619641

    Article  Google Scholar 

  13. Cariapa V, Park H, Kim J, Cheng C, Evaristo A (2008) Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine. Int J Adv Manuf Technol 39(1–2):92–106. doi:10.1007/s00170-007-1195-5

    Article  Google Scholar 

  14. Mohajerani, A.; Spelt, J.K., 2011: Erosive wear of borosilicate glass by low velocity unidirectional impact of abrasive spheres. Wear 270 11–12, 866 – 875. doi: 10.1016/j.wear.2011.02.015

  15. Yabuki, A.; Baghbanan, M.R.; Spelt, J.K., 2002: Contact forces and mechanisms in a vibratory finisher. Wear 252 7–8, 635–643. doi: 10.1016/S0043-1648(02)00016-9

  16. Wang, S.; Timsit, R.S.; Spelt, J.K., 2000: Experimental investigation of vibratory finishing of aluminum. Wear 243 1–2, 147–156. doi: 10.1016/S0043-1648(00)00437-3

  17. Risse, K., 2006: Einflüsse von Werkzeugdurchmesser und Schneidkantenverrundung beim Bohren mit Wendelbohrern in Stahl. Berichte aus der Produktionstechnik; Vol. 15/2006. Ed.: Eversheim, W.; Klocke, F.; Pfeifer, T.; Schuh, G.; Weck, M.; Brecher, C.; Schmitt, R. Aachen: Shaker.

  18. Sangid, M.D.; Stori, J.A.; Ferriera P. M., 2010: Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part I. Experimental study of process parameters. Int J Adv Manuf Technol 53 5–8, 545–560. doi: 10.1007/s00170-010-2857-2

  19. Jeong, H.W.; Aoki, T.; Hatsuzawa, T., 2004: High-efficiency fixed abrasive polishing method for quartz crystal blanks. Int J Mach Tools & Manuf 44 2–3, 167–173. doi: DOI: 10.1016/j.ijmachtools.2003.10.012

  20. Takahashi, Y.; Kataoka, M.; Uekusa, M.; Terumichi, Y., 2005: Behavior of three kinds of particles in rotary barrel with planetary rotation. Multibody System Dynamics 13 2, 195–209. doi: 10.1007/s11044-005-2515-x

  21. Dickmann, K.; Baumeister, M.; Pohle, T.; Cruse, C., 2009: Laserfeinschneiden mit Faserlaser und Gleitschleifen zur Nachbearbeitung. VDI-Z 151 6, 21–24.

  22. Matsunaga, M., Hagiuda, Y., 1967: Researches on barrel finishing. Report of the Institute of Industrial Science the University of Tokyo 17 4, 107–155.

  23. Brocker, R.; Klocke, F., 2011: Das Fertigungsverfahren Gleitschleifen. wt Werkstattstechnik online 101 6, 385–389.

  24. Uhlmann, E.; Dethlefs, A.; Eulitz, A., 2014: Investigation of material removal and surface topography formation in vibratory finishing. Procedia CIRP, 25–30. doi: 10.1016/j.procir.2014.03.048

  25. Abbott EJ, Firestone FA (1933) Specifying surface quality: a method based on accurate measurement and comparison. Mech Eng 55:569–572

    Google Scholar 

  26. DIN EN ISO 11562, 1998. Geometrical product specifications (GPS) - surface texture: profile method—metrological characteristics of phase correct filters. (withdrawn)

  27. DIN EN ISO 4287, 2010. Geometrical product specifications (GPS) - surface texture: profile method—terms, definitions and surface texture parameters.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Dethlefs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uhlmann, E., Dethlefs, A. & Eulitz, A. Investigation into a geometry-based model for surface roughness prediction in vibratory finishing processes. Int J Adv Manuf Technol 75, 815–823 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Vibratory finishing
  • Surface topography
  • Roughness prediction
  • Model
  • Steel
  • Polishing