Investigation into a geometry-based model for surface roughness prediction in vibratory finishing processes

  • E. Uhlmann
  • A. DethlefsEmail author
  • A. Eulitz


The machining process vibratory finishing is used to improve the topology of workpiece surfaces. Typically, surface roughness improves until a steady-state is reached. In this state, material will be removed but roughness remains relatively stable. Consequently, the focus of this paper is set on the so-called transient period of vibratory finishing. A new approach is presented to predict the roughness change after a given process time. In contrast to past approaches concentrating on mass or diameter loss of the workpiece, the model is based on geometric changes of the roughness-profile during the transient period of vibratory finishing. This model can be used to estimate process times needed to achieve a desired roughness of a workpiece.


Vibratory finishing Surface topography Roughness prediction Model Steel Polishing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DIN 8580, 2003. Manufacturing processes - terms and definitions, division.Google Scholar
  2. 2.
    DIN8589-17, 2003. Manufacturing processes chip removal - Part 17: barrel polishing; classification, subdivision, terms and definitions.Google Scholar
  3. 3.
    Uhlmann, E.; Dethlefs, A, 2011.: Polieren komplexer Bauteile. WB Werkstatt + Betrieb 6, p. 28–31.Google Scholar
  4. 4.
    Gillespie LK (2007) Mass finishing handbook, 1st edn. Industrial Press, New YorkGoogle Scholar
  5. 5.
    Uhlmann, E., Hasper, G., Mihotovic, V., 2011. Verfahren und Vorrichtung zum Gleitspanen eines Werkstücks. Patent DE 10 2009 024 313 Published Patent Application (2011-01-05). Fraunhofer Gesellschaft, TU BerlinGoogle Scholar
  6. 6.
    Arvin, J., 2002: The effect of chemically accelerated vibratory finishing on gear metrology. AGMA Technical Paper, 11–16.Google Scholar
  7. 7.
    Davidson, D., 2008: Vibratory finishing: versatile, effective and reliable. Metalfinishing 106 5, 30–34.Google Scholar
  8. 8.
    Gather D (2008) Future perspectives of mass finishing. MFN Metal Finishing News 9Google Scholar
  9. 9.
    Löhnert, V., 2006: Innovative Gleitschlifftechnik - praxisorientierte Bearbeitungslösungen. In: 6. Seminar Moderne Schleiftechnologie und Feinstbearbeitung. Ed.: Tawakoli, T.,11-1 - 11–26.Google Scholar
  10. 10.
    Hashimoto F (1996) Modelling and optimization of vibratory finishing process. Annals of the CIRP 45(1):303–306. doi: 10.1016/S0007-8506(07)63068-6 CrossRefGoogle Scholar
  11. 11.
    Domblesky J, Cariapa V, Evans R (2003) Investigation of vibratory bowl finishing. Int J Prod Res 41(16):3943–3953. doi: 10.1080/0020754031000152550 CrossRefGoogle Scholar
  12. 12.
    Domblesky J, Evans R, Cariapa V (2004) Material removal model for vibratory finishing. Int J Prod Res 42(5):1029–1042. doi: 10.1080/00207540310001619641 CrossRefGoogle Scholar
  13. 13.
    Cariapa V, Park H, Kim J, Cheng C, Evaristo A (2008) Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine. Int J Adv Manuf Technol 39(1–2):92–106. doi: 10.1007/s00170-007-1195-5 CrossRefGoogle Scholar
  14. 14.
    Mohajerani, A.; Spelt, J.K., 2011: Erosive wear of borosilicate glass by low velocity unidirectional impact of abrasive spheres. Wear 270 11–12, 866 – 875. doi:  10.1016/j.wear.2011.02.015
  15. 15.
    Yabuki, A.; Baghbanan, M.R.; Spelt, J.K., 2002: Contact forces and mechanisms in a vibratory finisher. Wear 252 7–8, 635–643. doi:  10.1016/S0043-1648(02)00016-9
  16. 16.
    Wang, S.; Timsit, R.S.; Spelt, J.K., 2000: Experimental investigation of vibratory finishing of aluminum. Wear 243 1–2, 147–156. doi:  10.1016/S0043-1648(00)00437-3
  17. 17.
    Risse, K., 2006: Einflüsse von Werkzeugdurchmesser und Schneidkantenverrundung beim Bohren mit Wendelbohrern in Stahl. Berichte aus der Produktionstechnik; Vol. 15/2006. Ed.: Eversheim, W.; Klocke, F.; Pfeifer, T.; Schuh, G.; Weck, M.; Brecher, C.; Schmitt, R. Aachen: Shaker.Google Scholar
  18. 18.
    Sangid, M.D.; Stori, J.A.; Ferriera P. M., 2010: Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part I. Experimental study of process parameters. Int J Adv Manuf Technol 53 5–8, 545–560. doi:  10.1007/s00170-010-2857-2
  19. 19.
    Jeong, H.W.; Aoki, T.; Hatsuzawa, T., 2004: High-efficiency fixed abrasive polishing method for quartz crystal blanks. Int J Mach Tools & Manuf 44 2–3, 167–173. doi: DOI:  10.1016/j.ijmachtools.2003.10.012
  20. 20.
    Takahashi, Y.; Kataoka, M.; Uekusa, M.; Terumichi, Y., 2005: Behavior of three kinds of particles in rotary barrel with planetary rotation. Multibody System Dynamics 13 2, 195–209. doi:  10.1007/s11044-005-2515-x
  21. 21.
    Dickmann, K.; Baumeister, M.; Pohle, T.; Cruse, C., 2009: Laserfeinschneiden mit Faserlaser und Gleitschleifen zur Nachbearbeitung. VDI-Z 151 6, 21–24.Google Scholar
  22. 22.
    Matsunaga, M., Hagiuda, Y., 1967: Researches on barrel finishing. Report of the Institute of Industrial Science the University of Tokyo 17 4, 107–155.Google Scholar
  23. 23.
    Brocker, R.; Klocke, F., 2011: Das Fertigungsverfahren Gleitschleifen. wt Werkstattstechnik online 101 6, 385–389.Google Scholar
  24. 24.
    Uhlmann, E.; Dethlefs, A.; Eulitz, A., 2014: Investigation of material removal and surface topography formation in vibratory finishing. Procedia CIRP, 25–30. doi:  10.1016/j.procir.2014.03.048
  25. 25.
    Abbott EJ, Firestone FA (1933) Specifying surface quality: a method based on accurate measurement and comparison. Mech Eng 55:569–572Google Scholar
  26. 26.
    DIN EN ISO 11562, 1998. Geometrical product specifications (GPS) - surface texture: profile method—metrological characteristics of phase correct filters. (withdrawn)Google Scholar
  27. 27.
    DIN EN ISO 4287, 2010. Geometrical product specifications (GPS) - surface texture: profile method—terms, definitions and surface texture parameters.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Institute for Machine Tools and Factory ManagementBerlinGermany

Personalised recommendations