Skip to main content
Log in

A simple online modeling approach for a time-varying forging process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The forging process involves the time-varying microstructure process of a forging and the macroscale motion of the hydraulic press machine (HPM). It is very challenging to model this process. In this paper, a simple and effective online modeling approach is proposed to meet this challenge. This proposed method first constructs a model set for the time-varying forging process. All parameters in the model set are then identified online by using process data. An error minimization-based match method is further developed to select a suitable model from the model set to reflect the present dynamic behavior of the system. Numerical cases and practical forging cases finally demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu XJ, Huang MH (2012) System decomposition based multi-level control for hydraulic press machine. IEEE Tran Ind Electron 59(4):1980–1987

    Article  MathSciNet  Google Scholar 

  2. Cho S.J., Lee J.C., Jeon Y.H., Jeon J.W. (2009). The development of a position conversion controller for hydraulic press systems. Proceedings of the 2009 I.E. International Conference on Robotics and Biomimetics, China.

  3. Shen G, Furrer D (2000) Manufacturing of aerospace forgings. J Mater Process Technol 98:189–195

    Article  Google Scholar 

  4. Boer C.R., Rebelo N., Rydstad H., Schroder G. (1985). Process modelling of metal forming and thermomechanical treatment. Springer-Verlag

  5. Lin C-J, Yau H-T, Tian Y-C (2013) Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans Mechatron 18(4):1385–1396

    Article  Google Scholar 

  6. Lee TH, Tan KK, Huang S (2011) Adaptive friction compensation with a dynamical friction model. IEEE/ASME Trans Mechatron 16(1):133–140

    Article  Google Scholar 

  7. Beddoes J., Bibbly M.J. (1999). Principles of metal manufacturing process, Arnold

  8. Lu XJ, Li YB, Huang MH (2013) Operation-region-decomposition-based singular value decomposition/neural network modeling method for complex hydraulic press machines. Ind Eng Chem Res 52(48):17221–17228

    Article  Google Scholar 

  9. Huang X.L. (2013). Microstructure evolution simulation and experimental study of 7A85 aluminum aviation joint forging by isothermal forging process, Master thesis, Central South University

  10. Yang C-B, Deng C-S, Chiang H-L (2012) Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int J Adv Manuf Technol 59:1103–1111

    Article  Google Scholar 

  11. Zhang Y, Yang J, Jiang H (2012) Machine tool thermal error modeling and prediction by grey neural network. Int J Adv Manuf Technol 59:1065–1072

    Article  Google Scholar 

  12. Jiang ZJ, Yang Y, Mo SY, Yao K, Gao FR (2012) Polymer extrusion: from control system design to product quality. Ind Eng Chem Res 51(45):14759–14770

    Article  Google Scholar 

  13. Li H-X, Deng H (2006) An approximate internal model based neural control for unknown nonlinear discrete processes. IEEE Trans Neural Networks 17(3):659–670

    Article  Google Scholar 

  14. Deng H, Li H-X (2005) A novel neural approximate inverse control for unknown nonlinear discrete dynamic systems. IEEE Trans Syst Man Cybern: Part B 35(1):115–123

    Article  Google Scholar 

  15. Lu C-H, Tsai C-C (2007) Generalized predictive control using recurrent fuzzy neural networks for industrial processes. J Process Control 17(1):83–92

    Article  MathSciNet  Google Scholar 

  16. Su Z-G, Wang P-H, Shen J, Zhang Y-F, Chen L (2012) Convenient T–S fuzzy model with enhanced performance using a novel swarm intelligent fuzzy clustering technique. J Process Control 22(1):108–124

    Article  Google Scholar 

  17. Wu HN, Li HX (2008) H Fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints. IEEE Trans Fuzzy Syst 16:502–516

    Article  Google Scholar 

  18. van Lith PF, Betlem BHL, Roffel B (2002) A structured modeling approach for dynamic hybrid fuzzy-first principles models. J Process Control 12(5):605–615

    Article  Google Scholar 

  19. Tanaka K, Wang HO (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley, New York

    Book  Google Scholar 

  20. Soderstrom, T., Stoica, P. (1989). System identification, Prentice Hall International (UK) Ltd

  21. Overschee PV, Moor BD (1996) Subspace identification for linear systems: theory, implementation, applications. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  22. Jeang A (1999) Robust tolerance design by response surface methodology. Int J Adv Manuf Technol 15(6):399–403

    Article  Google Scholar 

  23. Zhao Y-X, Chen X-D (2011) Model-based robust design for time–pressure fluid dispensing using surrogate modeling. Int J Adv Manuf Technol 55:433–446

    Article  Google Scholar 

  24. Lu XJ, Li H-X (2009) Perturbation theory based robust design for model uncertainty. ASME Trans J Mech Des 131(11):111006–1

    Article  Google Scholar 

  25. Chen M., Huang M.H., Zhou Y.C., Zhan L.H. (2009). Synchronism control system of heavy hydraulic press, IEEE International Conference on Measuring Technology and Mechatronics Automation, China

  26. Liao G.F. (2011). Simulation and experimental study of aviation joint forging by isothermal forging process, Master thesis, Central South University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinJiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Huang, M. A simple online modeling approach for a time-varying forging process. Int J Adv Manuf Technol 75, 1197–1205 (2014). https://doi.org/10.1007/s00170-014-6188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6188-6

Keywords

Navigation