Skip to main content
Log in

Research on AZ31 sheet one-pass hot spinning based on orthogonal experiment design

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnesium alloy shows good ductility and formability in a suitable temperature range, but the spinning of revolution surface workpiece with curved generatrix of magnesium alloy is a complicated problem; multi-pass spinning is low efficiency and needs multiple sets of die, and shear spinning is unsuitable for the formation of curved generatrix revolution surface since the strong thinning may lead to material damage. In this paper, one-pass hot spinning process for magnesium alloy AZ31 sheet is designed and investigated; the effect of the process parameters on the quality of the formed workpiece are analyzed; the minimal wall thickness and the maximal ovality of spun workpiece are taken as evaluating indexes; the process parameters are optimized by orthogonal experimental design based on the finite element simulation on the spinning process. The optimizing results of process parameters have been obtained: diameter-to-thickness ratio of sheet blank is 18, spinning temperature is 300 °C, feed rate is 1.0 mm/r, and swivel angle is 35°. Finally, the validity of the orthogonal experimental design results is demonstrated by one-pass hot spinning experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khraisheh MK, Abu-Farha FK, Nazzal MA, Weinmann KJ (2006) Combined mechanics-materials based optimization of superplastic forming of magnesium AZ31 alloy. CIRP Ann Manuf Technol 55:233–236. doi:10.1016/S0007-8506(07)60405-3

    Article  Google Scholar 

  2. Friedrich H, Schumann S (2001) Research for a “new age of magnesium” in the automobile industry. J Mater Process Technol 117:276–281. doi:10.1016/S0924-0136(01)00780-4

    Article  Google Scholar 

  3. Furuya H, Kogiso N, Matunaga S, Senda K (2000) Applications of magnesium alloys for aerospace structure systems. Mater Sci Forum 350–351:341–348

    Article  Google Scholar 

  4. Kojima Y (2000) Platform science and technology for advanced magnesium alloys. Mater Sci Forum 350:3–17

    Article  Google Scholar 

  5. Yukutake E, Kaneko J, Sugamata M (2003) Anisotropy and non-uniformity in plastic behavior of AZ31 magnesium alloy plates. Mater Trans 44:452–457. doi:10.2320/matertrans.44.452

    Article  Google Scholar 

  6. Zhang H, Huang GS, Roven HJ, Wang LF, Pan FS (2013) Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets. Mater Des 50:667–673. doi:10.1016/j.matdes.2013.03.053

    Article  Google Scholar 

  7. Ogawa N, Shiomi M, Osakada K (2002) Forming limit of magnesium alloy at elevated temperatures for precision forging. Int J Mach Tool Manuf 42:607–614. doi:10.1016/S0890-6955(01)00149-3

    Article  Google Scholar 

  8. Chan LC, Lu XZ (2014) Material sensitivity and formability prediction of warm-forming magnesium alloy sheets with experimental verification. Int J Adv Manuf Technol 71:253–262. doi:10.1007/s00170-013-5435-6

    Article  Google Scholar 

  9. Lee SM, Kang CG, Kang SB (2010) The effect of a multistep deep-drawing process with circular and rectangular shapes on the deformation of AZ31 magnesium sheets. Int J Adv Manuf Technol 51:891–903. doi:10.1007/s00170-010-2674-7

    Article  MathSciNet  Google Scholar 

  10. Chandrasekaran M, John YMS (2004) Effect of materials and temperature on the forward extrusion of magnesium alloys. Mater Sci Eng A Struct 381:308–319. doi:10.1016/j.msea.2004.04.057

    Article  Google Scholar 

  11. Hsiang SH, Kuo JL (2005) Applying ANN to predict the forming load and mechanical property of magnesium alloy under hot extrusion. Int J Adv Manuf Technol 26:970–977. doi:10.1007/s00170-004-2064-0

    Article  Google Scholar 

  12. Wang Q, Zhang ZM, Zhang X, Li GJ (2010) New extrusion process of Mg alloy automobile wheels. Trans Nonferrous Metals Soc China 20:S599–S603

    Article  Google Scholar 

  13. Murata M, Kuboki T, Murai T (2005) Compression spinning of circular magnesium tube using heated roller tool. J Mater Process Technol 162:540–545. doi:10.1016/j.jmatprotec.2005.02.199

    Article  Google Scholar 

  14. Yoshihara S, Mac Donald B, Hasegawa T, Kawahara M, Yamamoto H (2004) Design improvement of spin forming of magnesium alloy tubes using finite element. J Mater Process Technol 153:816–820. doi:10.1016/j.jmatprotec.2004.04.386

    Article  Google Scholar 

  15. Yang H, Huang L, Zhan M (2010) Coupled thermo-mechanical FE simulation of the hot splitting spinning process of magnesium alloy AZ31. Comput Mater Sci 47:857–866. doi:10.1016/j.commatsci.2009.11.014

    Article  Google Scholar 

  16. Wang L, Long H (2011) A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning. J Mater Process Technol 211:2140–2151. doi:10.1016/j.jmatprotec.2011.07.013

    Article  Google Scholar 

  17. Kleiner M, Gobel R, Kantz H, Klimmek CH, Homberg W (2002) Combined methods for prediction of dynamic instabilities in sheet metal spinning. CIRP Ann Manuf Technol 51:209–214. doi:10.1016/S0007-8506(07)61501-7

    Article  Google Scholar 

  18. Chen SX, Jia WD, Cao GS, Zhao HW (1986) Powerful spinning technology and equipment. Beijing, China. In Chinese

  19. Xia QX, Shima SS, Kotera H, Yasuhuku D (2005) A study of the one-path deep drawing spinning of cups. J Mater Process Technol 159(3):397–400. doi:10.1016/j.jamtprotec.2004.05.027

    Article  Google Scholar 

  20. Wang CH, Liu KZ (1986) Spinning technology. Beijing, China. In Chinese

  21. Wang L, Long H (2011) Investigation of material deformation in multi-pass conventional spinning. Mater Des 32:2891–2899. doi:10.1016/j.matdes.2010.12.021

    Article  Google Scholar 

  22. Xia QX, Lai ZY, Long H, Cheng XQ (2013) A study of the spinning force of hollow parts with triangular cross sections. Int J Adv Manuf Technol 68:2461–2470. doi:10.1007/s00170-013-4847-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yi Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Cai, ZY., Xu, HQ. et al. Research on AZ31 sheet one-pass hot spinning based on orthogonal experiment design. Int J Adv Manuf Technol 75, 897–907 (2014). https://doi.org/10.1007/s00170-014-6186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6186-8

Keywords

Navigation