Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire

Abstract

Laser welding of thick plates has been used in automobile and shipping industry owing to its focusing heat input, little welding deformation, and high productivity. Using narrow-gap technique can decrease the filling volumes of wire and increase the welding efficiency. However, its process is more complicated since it introduces filler wire to narrow-gap weld configurations. Usually the welding path, planning mainly depends on man’s experiences. Human factors have big influences on the quality of the joint. The aim of this paper is to study the interactions between welding parameters and the geometry of single bead using statistical methods. Then, the founded models were employed to plan the welding path, the number of filling passes, and layers in the multi-pass narrow nap joining. These results will provide supports for automatic multi-pass laser welding. The welding system includes a 10-kW Nd:YAG laser system, a KUKA robot, a Fronius wire feeder, and a 20-mm-thick high-strength ship steel with narrow gap. Laser power, welding speed, and wire feed rate are input variables. The responses include the transversal area of the added metals, bead width, bead height, and the ratio of bead width to height. Verification experiments indicate that all these models can forecast the responses within the factor domain. Transversal section micrographs of the joints show that this method can get welding joint with less defects.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sun Z, Salminen AS (1997) Current status of laser welding with wire feed. Mater Manuf Process 12(5):759–777. doi:10.1080/10426919708935183

    Article  Google Scholar 

  2. 2.

    Moskvitin GV, Polyakov AN, Birger EM (2013) Application of laser welding methods in industrial production. Weld Int 27(7):572–580. doi:10.1080/09507116.2012.715953

    Article  Google Scholar 

  3. 3.

    Tommi J, Veli K (2003) High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor. Fusion Eng Des 69:349–353

    Article  Google Scholar 

  4. 4.

    Massey S (2012) State-of-the-art in narrow groove welding technology and techniques. In: Summary report SR. EWI, USA

  5. 5.

    Malin VY (1983) The state-of-the-art of narrow gap welding. Weld J 62(6):37–46

    Google Scholar 

  6. 6.

    Milewski JO, Sklar E, Santa Fe (1998) Narrow gap laser welding: United States, NO. 5760365, Jun 2

  7. 7.

    Muruganetal S (1998) Temperature distribution during multi-pass welding of plates. Int J Press Vessel Pip 75(12):891–905. doi:10.1016/S0308-0161(98)00094-5

    Article  Google Scholar 

  8. 8.

    Lucas MJ (1975) Narrow-groove welding: United States, NO. 3924095, Dec. 2

  9. 9.

    Schiltz H (1993) Electron beam welding. Woodhead, England, pp 3–5

    Google Scholar 

  10. 10.

    Shannon GJ, Davitt C, Steen WM (1997) Thick section laser butt welding of structural steel using a coaxial powder filler nozzle. ICALEO ’97: Laser Materials Processing

  11. 11.

    Yu YC, Yang SL, Yin Y, Wang CM, Hu XY, Meng XX, Yu SF (2013) Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration. J Mech Sci Technol 27(7):2125–2131. doi:10.1007/s12206-013-0525-9

    Article  Google Scholar 

  12. 12.

    Webster S, Kristensen JK, Petring D (2008) Joining of thick section steels using hybrid laser welding. Ironmak Steelmak 35(7):496–504. doi:10.1179/174328108X358505 (9)

    Article  Google Scholar 

  13. 13.

    Zhang XD, Ashida E, Tarasawa S, Anma Y, Okada M, Katayama S, Mizutani M (2011) Welding of thick stainless steel plates up to 50 mm with high brightness lasers. J Laser Appl 23(2):1–7. doi:10.2351/1.3567961

    Article  Google Scholar 

  14. 14.

    Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw 39(6):483–496. doi:10.1016/j.advengsoft.2007.03.012

    Article  Google Scholar 

  15. 15.

    Lee HK, Han HS, Son KJ, Hong SB (2006) Optimization of Nd-YAG laser welding parameters for sealing small titanium tube ends. Mater Sci Eng 415(1):149–155. doi:10.1016/j.msea.2005.09.059

    Article  Google Scholar 

  16. 16.

    Park YW, Rhee S (2008) Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int J Adv Manuf Technol 37(9–10):1014–1021. doi:10.1007/s00170-007-1039-3

    Article  Google Scholar 

  17. 17.

    Elmesalamy AS, Li L, Francis JA, Sezer HK (2013) Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int J Adv Manuf Technol 68(1–4):1–17. doi:10.1007/s00170-013-4739-x

    Article  Google Scholar 

  18. 18.

    Shahi AS, Pandey S, Gill JS (2007) Effect of auxiliary preheating of filler wire on dilution in gas metal arc stainless steel surfacing using RSM. Surf Eng 23(5):384–390. doi:10.2179/174329407X247127

    Article  Google Scholar 

  19. 19.

    Salminen AS (2003) The effects of filler wire feed on the efficiency of laser welding. In: First international symposium on high-power laser macroprocessing. Proceedings of SPIE 4831: 263–268

  20. 20.

    Kah P, Martikainen J (2013) Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64(9–12):1411–1421. doi:10.1007/s00170-012-4111-6

    Article  Google Scholar 

  21. 21.

    Leigh S, Sezer K, Li L, Grafton-Reed C, Cuttell M (2009) Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy. Int J Adv Manuf Technol 43(11):1094–1105. doi:10.1007/s00170-008-1789-6

    Article  Google Scholar 

  22. 22.

    Reisgen U, Schleser M, Mokrov O, Ahmed E (2012) Statistical modeling of laser welding of DP/TRIP steel sheets. Opt Laser Technol 44(1):92–101. doi:10.1016/j.optlastec.2011.05.025

    Article  Google Scholar 

  23. 23.

    Khan MMA, Romoli L, Marco F, Dini G, Sarri F (2012) Multi-response optimization of laser welding of stainless steels in a constrained fillet joint configuration using RSM. Int J Adv Manuf Technol 62:587–603. doi:10.1007/s00170-011-3835-z

    Article  Google Scholar 

  24. 24.

    Arata Y, Maruo H, Miyamoto I, Nishio R (1986) High power CO2 laser welding of thick plate—multipass welding with filler wire. Trans JWRI 15(2):199–206

    Google Scholar 

  25. 25.

    Salminen AS, Kujanpää VP (2003) Effect of wire feed position on laser welding with filler wire. J Laser Appl 15(2):1–10. doi:10.2351/1.1514220

    Google Scholar 

  26. 26.

    Manonmani K, Murugan N, Buvanasekaran G (2007) Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int J Adv Manuf Technol 32:1125–1133. doi:10.1007/s00170-006-0432-7

    Article  Google Scholar 

  27. 27.

    Salminen A (2010) The filler wire—laser beam interaction during laser welding with low alloyed steel filler wire. Mechanika 4(84):67–74

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Zhang, K., Xu, Z. et al. Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire. Int J Adv Manuf Technol 75, 279–291 (2014). https://doi.org/10.1007/s00170-014-6159-y

Download citation

Keywords

  • Narrow-gap laser welding
  • Multi-pass welding
  • Process optimization
  • Weld path planning
  • Statistical method