Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire

  • Hao Shi
  • Ke ZhangEmail author
  • Zhengyi Xu
  • Tianyu Huang
  • Liwen Fan
  • Weining Bao


Laser welding of thick plates has been used in automobile and shipping industry owing to its focusing heat input, little welding deformation, and high productivity. Using narrow-gap technique can decrease the filling volumes of wire and increase the welding efficiency. However, its process is more complicated since it introduces filler wire to narrow-gap weld configurations. Usually the welding path, planning mainly depends on man’s experiences. Human factors have big influences on the quality of the joint. The aim of this paper is to study the interactions between welding parameters and the geometry of single bead using statistical methods. Then, the founded models were employed to plan the welding path, the number of filling passes, and layers in the multi-pass narrow nap joining. These results will provide supports for automatic multi-pass laser welding. The welding system includes a 10-kW Nd:YAG laser system, a KUKA robot, a Fronius wire feeder, and a 20-mm-thick high-strength ship steel with narrow gap. Laser power, welding speed, and wire feed rate are input variables. The responses include the transversal area of the added metals, bead width, bead height, and the ratio of bead width to height. Verification experiments indicate that all these models can forecast the responses within the factor domain. Transversal section micrographs of the joints show that this method can get welding joint with less defects.


Narrow-gap laser welding Multi-pass welding Process optimization Weld path planning Statistical method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun Z, Salminen AS (1997) Current status of laser welding with wire feed. Mater Manuf Process 12(5):759–777. doi: 10.1080/10426919708935183 CrossRefGoogle Scholar
  2. 2.
    Moskvitin GV, Polyakov AN, Birger EM (2013) Application of laser welding methods in industrial production. Weld Int 27(7):572–580. doi: 10.1080/09507116.2012.715953 CrossRefGoogle Scholar
  3. 3.
    Tommi J, Veli K (2003) High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor. Fusion Eng Des 69:349–353CrossRefGoogle Scholar
  4. 4.
    Massey S (2012) State-of-the-art in narrow groove welding technology and techniques. In: Summary report SR. EWI, USAGoogle Scholar
  5. 5.
    Malin VY (1983) The state-of-the-art of narrow gap welding. Weld J 62(6):37–46Google Scholar
  6. 6.
    Milewski JO, Sklar E, Santa Fe (1998) Narrow gap laser welding: United States, NO. 5760365, Jun 2Google Scholar
  7. 7.
    Muruganetal S (1998) Temperature distribution during multi-pass welding of plates. Int J Press Vessel Pip 75(12):891–905. doi: 10.1016/S0308-0161(98)00094-5 CrossRefGoogle Scholar
  8. 8.
    Lucas MJ (1975) Narrow-groove welding: United States, NO. 3924095, Dec. 2Google Scholar
  9. 9.
    Schiltz H (1993) Electron beam welding. Woodhead, England, pp 3–5Google Scholar
  10. 10.
    Shannon GJ, Davitt C, Steen WM (1997) Thick section laser butt welding of structural steel using a coaxial powder filler nozzle. ICALEO ’97: Laser Materials ProcessingGoogle Scholar
  11. 11.
    Yu YC, Yang SL, Yin Y, Wang CM, Hu XY, Meng XX, Yu SF (2013) Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration. J Mech Sci Technol 27(7):2125–2131. doi: 10.1007/s12206-013-0525-9 CrossRefGoogle Scholar
  12. 12.
    Webster S, Kristensen JK, Petring D (2008) Joining of thick section steels using hybrid laser welding. Ironmak Steelmak 35(7):496–504. doi: 10.1179/174328108X358505 (9)CrossRefGoogle Scholar
  13. 13.
    Zhang XD, Ashida E, Tarasawa S, Anma Y, Okada M, Katayama S, Mizutani M (2011) Welding of thick stainless steel plates up to 50 mm with high brightness lasers. J Laser Appl 23(2):1–7. doi: 10.2351/1.3567961 CrossRefGoogle Scholar
  14. 14.
    Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw 39(6):483–496. doi: 10.1016/j.advengsoft.2007.03.012 CrossRefGoogle Scholar
  15. 15.
    Lee HK, Han HS, Son KJ, Hong SB (2006) Optimization of Nd-YAG laser welding parameters for sealing small titanium tube ends. Mater Sci Eng 415(1):149–155. doi: 10.1016/j.msea.2005.09.059 CrossRefGoogle Scholar
  16. 16.
    Park YW, Rhee S (2008) Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int J Adv Manuf Technol 37(9–10):1014–1021. doi: 10.1007/s00170-007-1039-3 CrossRefGoogle Scholar
  17. 17.
    Elmesalamy AS, Li L, Francis JA, Sezer HK (2013) Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int J Adv Manuf Technol 68(1–4):1–17. doi: 10.1007/s00170-013-4739-x CrossRefGoogle Scholar
  18. 18.
    Shahi AS, Pandey S, Gill JS (2007) Effect of auxiliary preheating of filler wire on dilution in gas metal arc stainless steel surfacing using RSM. Surf Eng 23(5):384–390. doi: 10.2179/174329407X247127 CrossRefGoogle Scholar
  19. 19.
    Salminen AS (2003) The effects of filler wire feed on the efficiency of laser welding. In: First international symposium on high-power laser macroprocessing. Proceedings of SPIE 4831: 263–268Google Scholar
  20. 20.
    Kah P, Martikainen J (2013) Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64(9–12):1411–1421. doi: 10.1007/s00170-012-4111-6 CrossRefGoogle Scholar
  21. 21.
    Leigh S, Sezer K, Li L, Grafton-Reed C, Cuttell M (2009) Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy. Int J Adv Manuf Technol 43(11):1094–1105. doi: 10.1007/s00170-008-1789-6 CrossRefGoogle Scholar
  22. 22.
    Reisgen U, Schleser M, Mokrov O, Ahmed E (2012) Statistical modeling of laser welding of DP/TRIP steel sheets. Opt Laser Technol 44(1):92–101. doi: 10.1016/j.optlastec.2011.05.025 CrossRefGoogle Scholar
  23. 23.
    Khan MMA, Romoli L, Marco F, Dini G, Sarri F (2012) Multi-response optimization of laser welding of stainless steels in a constrained fillet joint configuration using RSM. Int J Adv Manuf Technol 62:587–603. doi: 10.1007/s00170-011-3835-z CrossRefGoogle Scholar
  24. 24.
    Arata Y, Maruo H, Miyamoto I, Nishio R (1986) High power CO2 laser welding of thick plate—multipass welding with filler wire. Trans JWRI 15(2):199–206Google Scholar
  25. 25.
    Salminen AS, Kujanpää VP (2003) Effect of wire feed position on laser welding with filler wire. J Laser Appl 15(2):1–10. doi: 10.2351/1.1514220 Google Scholar
  26. 26.
    Manonmani K, Murugan N, Buvanasekaran G (2007) Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int J Adv Manuf Technol 32:1125–1133. doi: 10.1007/s00170-006-0432-7 CrossRefGoogle Scholar
  27. 27.
    Salminen A (2010) The filler wire—laser beam interaction during laser welding with low alloyed steel filler wire. Mechanika 4(84):67–74Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Hao Shi
    • 1
  • Ke Zhang
    • 1
    Email author
  • Zhengyi Xu
    • 1
  • Tianyu Huang
    • 1
  • Liwen Fan
    • 1
  • Weining Bao
    • 1
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations