Skip to main content
Log in

Position control of pneumatic actuator using an enhancement of NPID controller based on the characteristic of rate variation nonlinear gain

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents an enhancement of nonlinear proportional-integral-derivative (PID) controller for pneumatic positioning system by utilizing the characteristic of rate variation nonlinear gain known as multi-rate nonlinear PID controller. The proposed technique is designed and implemented to a variably loaded pneumatic actuator. To utilize the rate variation of nonlinear gain, fuzzy logic technique was used in determining the appropriate rate selection to produce a rapid response without generating a significant overshoot. Simulation and experimental tests are conducted with different kinds of input, namely, step, sinusoidal, and random wave forms to evaluate the performance of the proposed technique. The results have proven as a novel initiative at examining and identifying the characteristic based on a new proposal controller resulting from NPID controller where the transient response has improved by a factor of 7 times greater than the previous NPID technique. Moreover, the performance of pneumatic positioning system is remarkably good when operated under the variable load condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hildebrandt A, Neumann R, Sawodny O (2010) Optimal system design of SISO-servopneumatic positioning drives. IEEE Trans Control Syst Technol 18(1):35–44. doi:10.1109/TCST.2008.2009879

    Article  Google Scholar 

  2. Noor SBM, Ali HI, Marhaban MH (2011) Design of combined robust controller for a pneumatic servo actuator system with uncertainty. Sci Res Essays 6(4):949–965

    Google Scholar 

  3. Lu C-H, Hwang Y-R (2012) A model reference robust multiple-surfaces design for tracking control of radial pneumatic motion systems. Nonlinear Dyn 67(4):2585–2597. doi:10.1007/s11071-011-0171-7

    Article  MathSciNet  Google Scholar 

  4. Saleem A, Abdrabbo S, Tutunji T (2009) On-line identification and control of pneumatic servo drives via a mixed-reality environment. Int J Adv Manuf Technol 40(5):518–530. doi:10.1007/s00170-008-1374-z

    Article  Google Scholar 

  5. Messina A, Giannoccaro NI, Gentile A (2005) Experimenting and modelling the dynamics of pneumatic actuators controlled by the pulse width modulation (PWM) technique. Mechatronics 15(7):859–881. doi:10.1016/j.mechatronics.2005.01.003

    Article  Google Scholar 

  6. Rahmat MF, Salim SNS, Faudzi AAM et al (2011) Non-linear modeling and cascade control of an industrial pneumatic actuator system. Aust J Basic Appl Sci 5(8):465–477

    Google Scholar 

  7. Faudzi AAM, Suzumori K, Wakimoto S (2010) Development of an intelligent chair tool system applying new intelligent pneumatic actuators. Adv Robot 24(10):1503–1528. doi:10.1163/016918610X505602

    Article  Google Scholar 

  8. Khayati K, Bigras P, Dessaint L-A (2009) LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization. Mechatronics 19(4):535–547. doi:10.1016/j.mechatronics.2008.12.006

    Article  Google Scholar 

  9. Shen T, Tamura K, Henmi N et al (1998) Robust model following controller applied to positioning of pneumatic control valve with friction. In: IEEE International Conference on Control Applications. pp 512–516

  10. Wang J, Pu J, Moore P (1999) A practical control strategy for servo-pneumatic systems. Control Eng Pract 7(12):1483–1488. doi:10.1016/0141-6359(87)90081-X

    Article  Google Scholar 

  11. Reznik L, Ghanayem O, Bourmistrov A (2000) PID plus fuzzy controller structures as a design base for industrial applications. Eng Appl of Artif Intell 13(4):419–430

    Article  Google Scholar 

  12. Richer E, Hurmuzlu Y (2001) A high performance pneumatic force actuator system. Part 2—nonlinear controller design. J Dyn Syst Meas Control 122(3):426–434. doi:10.1115/1.1286366

    Article  Google Scholar 

  13. Taghizadeh M, Najafi F, Ghaffari A (2010) Multimodel PD-control of a pneumatic actuator under variable loads. Int J Adv Manuf Technol 48(5):655–662. doi:10.1007/s00170-009-2293-3

    Article  Google Scholar 

  14. Ning S, Bone GM (2005) Development of a nonlinear dynamic model for a servo pneumatic positioning system. In: IEEE International Conference on Mechatronics and Automation. pp 43–48

  15. Kaitwanidvilai S, Olranthichachat P (2011) Robust loop shaping-fuzzy gain scheduling control of a servo-pneumatic system using particle swarm optimization approach. Mechatronics 21(1):11–21. doi:10.1016/j.mechatronics.2010.07.010

    Article  Google Scholar 

  16. Hassan MY (2010) A neural network based fuzzy controller for pneumatic circuit. Eng Tech J 28(4):793–806

    Google Scholar 

  17. Bone GM, Ning S (2007) Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators. IEEE/ASME Trans Mechatron 12(5):557–561. doi:10.1109/TMECH.2007.905718

    Article  Google Scholar 

  18. Van Varseveld RB, Bone GM (1997) Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Trans Mechatron 2(3):195–204. doi:10.1109/3516.622972

    Article  Google Scholar 

  19. Aziz S, Bone GM (1998) Automatic tuning of an accurate position controller for pneumatic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp 1782–1788

  20. Xiang F, Wikander J (2003) QFT control design for an approximately linearized pneumatic positioning system. Int J Robust Nonlinear Control 13(7):675–688. doi:10.1002/rnc.832

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao X, Feng Z-J (2005) Design study of an adaptive Fuzzy-PD controller for pneumatic servo system. Control Eng Pract 13(1):55–65. doi:10.1016/j.conengprac.2004.01.001

    Article  Google Scholar 

  22. Rahmat MF, Salim SNS, Sunar NH et al (2012) Identification and non-linear control strategy for industrial pneumatic actuator. Int J Phys Sci 7(17):2565–2579. doi:10.5897/IJPS12.030

    Article  Google Scholar 

  23. Bigras P, Khayati K (2002) Nonlinear observer for pneumatic system with non-negligible connection port restriction. In: Proceedings of the American Control Conference. pp 3191–3195

  24. Najafi F, Fathi M, Saadat M (2009) Dynamic modelling of servo pneumatic actuators with cushioning. Int J Adv Manuf Technol 42(7):757–765. doi:10.1007/s00170-008-1635-x

    Article  Google Scholar 

  25. Beater P (2007) Pneumatic drives (system design, modeling and control). Springer, Verlag Berlin Heidelberg

    Google Scholar 

  26. Kothapalli G, Hassan MY (2008) Design of a neural network based intelligent PI controller for a pneumatic system. Int J Comput Sci 35(2):217–225

    Google Scholar 

  27. Canudas DWC, Olsson H, Htrom KJ et al (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425. doi:10.1109/9.376053

    Article  MATH  Google Scholar 

  28. Rahmat MF, Zulfatman, Husain AR et al (2011) Modeling and controller design of an industrial hydraulic actuator system in the presence of friction and internal leakage. Int J Phys Sci 6(14):3502–3517

    Google Scholar 

  29. Richer E, Hurmuzlu Y (2001) A high performance pneumatic force actuator system Part 1—nonlinear mathematical model. J Dyn Syst Meas Control 122(3):416–425. doi:10.1115/1.1286336

    Article  Google Scholar 

  30. Sabeghi M, Naghibzadeh M (2006) A fuzzy algorithm for real-time scheduling of soft periodic tasks. Int J Comput Sci Netw Secur 6(2A):227–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Rahmat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, S.N.S., Rahmat, M.F., Faudzi, A.‘.M. et al. Position control of pneumatic actuator using an enhancement of NPID controller based on the characteristic of rate variation nonlinear gain. Int J Adv Manuf Technol 75, 181–195 (2014). https://doi.org/10.1007/s00170-014-6064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6064-4

Keywords

Navigation