Skip to main content
Log in

On the prediction of shrinkage defects by thermal criterion functions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The goal of the present study is to predict the formation of solidification induced defects in castings by thermal criteria functions. In a criterion function method, the heat transfer equation is firstly solved, and then the susceptibility of defect formation at every point in the casting is predicted by computing a local function, criterion function, using results of the thermal analysis. In the first part of the paper, some famous criteria functions, in particular, the Pellini and Niyama criteria, are analyzed and their shortcomings are discussed in details. Then, a new criterion function is suggested to decrease the shape-dependency issue of the former criteria. The feasibility of the new method is studied by comparing numerical results against some archived experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell J. (2003) Castings. Butterworth-Heinemann

  2. Niyama E., Uchida T., Morikawa M., Saito S. (1982) A method of shrinkage prediction and its application to steel casting practice. AFS Int. Cast Metals J. 7:52–63

    Google Scholar 

  3. Carlson K. D., Hardin R. A., Ou S., Beckermann C. (2002) Development of new feeding-distance rules using casting simulation: part I. Methodology. Metall. Mater. Trans. B 33:731–740

    Article  Google Scholar 

  4. Stefanescu D. (2005) Computer simulation of shrinkage related defects in metal castings—a review. Int. J. Cast Metals Res. 18:129–143

    Article  Google Scholar 

  5. Tavakoli R., Davami P. (2007) Unconditionally stable fully explicit finite difference solution of solidification problems. Metall. Mater. Trans. B 38:121–142

    Article  Google Scholar 

  6. Hong C.P. (2004) Computer modelling of heat and fluid flow in materials processing. CRC Press

  7. Lewis R.W., Ravindran K. (2000) Finite element simulation of metal casting. Int. J. Numer. Meth. Eng. 47:29–59

    Article  MATH  Google Scholar 

  8. Pao W.K.S., Ransing R.S., Lewis R.W., Lin C. (2004) A medial-axes-based interpolation method for solidification simulation. Finite Elem. Anal. Des. 40 (5):577–593

    Article  Google Scholar 

  9. Pequet C., Gremaud M., Rappaz M. (2002) Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: applications to aluminum alloys. Metall. Mater. Trans. A 33:2095–2106

    Article  Google Scholar 

  10. Pellini W. (1953) Factors which determine riser adequacy and feeding range. AFS Trans. 61:61–80

    Google Scholar 

  11. Ou S., Carlson K.D., Hardin R. (2002) Development of new feeding-distance rules using casting simulation: part II. the new rules. Metall. Mater. Trans. B 33:741–755

    Article  Google Scholar 

  12. Ou S., Carlson K.D., Beckermann C. (2005) Feeding and risering of high-alloy steel castings. Metall. Mater. Trans. B 36:97–116

    Article  Google Scholar 

  13. Carlson K.D., Qu S., Beckermann C. (2005) Feeding of high-nickel alloy castings. Metall. Mater. Trans. B 36:843–856

    Article  Google Scholar 

  14. Hansen P., Sahm P. (1988) How to model and simulate the feeding process in casting to predict shrinkage and porosity formation. In: Modeling of casting and welding process IV, pp. 33–42. TMS-AIME

  15. Hansen P., Sahm P., Flender E. (1993) How to select and use criterion functions in solidification simulation. AFS Trans. 101:443–446

    Google Scholar 

  16. Sigworth G., Wang C. (1993) Mechanisms of porosity formation during solidification. A theoretical analysis. Metall. Mater. Trans. B 24:349–364

    Article  Google Scholar 

  17. Spittle J., Almeshhedani M., Brown S. (1994) The Niyama function and its proposed application to microporosity prediction. Cast Met. 7:51–51

    Google Scholar 

  18. Carlson K., Beckermann C. (2009) Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metall. Trans. A 40:163–175

    Article  Google Scholar 

  19. Sigworth G. (2009) Discussion of prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metall. Trans. A 40:3051–53

    Article  Google Scholar 

  20. Carlson K., Beckermann C. (2009) Authors reply to discussion of prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metall. Mater. Trans. A 40:3054–3055

    Article  Google Scholar 

  21. Jakumeit J., Jana S., Böttger B., Laqua R., Jouani M.Y., Bührig-Polaczek A. (2012) Simulation-based prediction of micro-shrinkage porosity in aluminum casting: fully-coupled numerical calculation vs. criteria functions IOP conference series: materials science and engineering, vol 27. IOP Publishing, p 012066

  22. Kang M., Gao H., Wang J., Ling L., Sun B. (2013) Prediction of microporosity in complex thin-wall castings with the dimensionless Niyama criterion. Mater. 6 (5):1789–1802

    Article  Google Scholar 

  23. Lee Y.W., Chang E., Chieu C.F. (1990) Modeling of feeding behaviour of solidifying AI-7Si-0.3Mg alloy plate castings. Metall. Mater. Trans. B 21:715–722

    Article  Google Scholar 

  24. Lee P.D., Chirazi A., See D. (2001) Modeling microporosity in aluminum–silicon alloys: a review. J. Light Met. 1:15– 30

    Article  Google Scholar 

  25. Felicelli S.D., Wang L., Pita C.M., De Obaldia E.E. (2009) A model for gas microporosity in aluminum and magnesium alloys. Met. Mater. Trans. B 40 (2):169–181

    Article  Google Scholar 

  26. Tavakoli R., Davami P. (2008) Optimal riser design in sand casting process by topology optimization with SIMP method I: poisson approximation of nonlinear heat transfer equation. Struct. Multidisc. Optim. 36:193–202

    Article  Google Scholar 

  27. Tagavi K., Chow L., Solaiappan O. (1990) Void formation in unidirectional solidification. Exp. Heat Transf. 3:239–255

    Article  Google Scholar 

  28. Sulfredge C, Chow L, Tagavi K (1993) Void initiation and growth in unidirectional freezing. Exp. Heat Transf. 6:411– 436

    Article  Google Scholar 

  29. Kim J.M., Kim D.G., Kwon H.W., Loper C.R. (1998) Pore behavior at the solid/liquid interface during solidification. Scripta Mater. 39:969–975

    Article  Google Scholar 

  30. Flemings M.C (1974) Solidification processing. McGraw-Hill

  31. Santos R., Garcia A. (1998) Thermal behaviour during the inward solidification of cylinders and spheres and correlation with structural effects. Int. J. Cast Met. Res. 11:187–195

    Google Scholar 

  32. Osher S., Fedkiw R. (2003) Level set methods and dynamic implicit surfaces, volume 153 of applied mathematical sciences. Springer

  33. George E.S., Elder S.P., Abbaschian G.J. (1988) Thermal profiles measured during casting of a steel hammer. In: modeling of casting welding and adevanced solidification processes IV, pp. 775–788. TMS-AIME

  34. Morthland T.E., Byrne P.E., Tortorelli D.A., Dantzig J.A. (1995) Optimal riser design for metal castings. Metall. Mater. Trans. B 26:871–885

    Article  Google Scholar 

  35. Manzari M.T., Gethin D.T., Lewis R.W. (2000) Optimisation of heat transfer between casting and mould. Int. J. Cast Metals Res. 13:199–206

    Google Scholar 

  36. Ransing R.S., Pao W.K.S., Lin C., Sood M.P., Lewis R.W. (2005) Enhanced medial axis interpolation algorithm and its application to hotspot prediction in a mouldcasting assembly. Int. J. Cast Metals Res. 18(1):1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, R. On the prediction of shrinkage defects by thermal criterion functions. Int J Adv Manuf Technol 74, 569–579 (2014). https://doi.org/10.1007/s00170-014-5995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5995-0

Keywords

Navigation