Skip to main content
Log in

Mechanistic force modeling and machinability evaluation on MR-compatible materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI)-guided surgical robots are becoming a hotspot owing to the good quality of MR image and stability of robot. For the MR-compatible robot, machinability influences assembly accuracy and kinematic accuracy directly. At the same time, the cutting force plays a vital role in evaluating machinability and machining process. This paper presents the machinability evaluation on five kinds of MR-compatible materials and an improved mechanistic force model. The model takes shearing and edge forces of flank and bottom edge combined with tool runout into consideration. Experimental results show that the prediction error is within 9 %. The effects that chip shape imposes on the machining stability and surface roughness are analyzed and then involved in the machinability evaluation. Digraph and matrix method are applied to evaluate the material machinability based on cutting force, roughness, and the chip shape. Relative importance between the three components is analyzed and taken into the evaluation. At last, polyformaldehyde is proved to have the best machinability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai J (2010) Surgical robotics and its development and progress. Robotica 28(3):161

    Article  Google Scholar 

  2. Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG (2004) Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. J Biomech Eng-T ASME 126(4):458–465

    Article  Google Scholar 

  3. Krieger A, Susil RC, Ménard C, Coleman JA, Fichtinger G, Atalar E, Whitcomb LL (2005) Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng 52(2):306–313

    Article  Google Scholar 

  4. Chinzei K, Kikinis R, Jolesz FA (1999) MR compatibility of mechatronic devices: design criteria. In Proc. of MICCAI 1999 Conf. Cambridge, England, 1999: 1020–1030

  5. Chinzei K, Hata N, Jolesz FA, Kikinis R (2000) MR compatible surgical assist robot: system integration and preliminary feasibility study. In Proc. of MICCAI 2000 Conf. Pittsburgh, 2000: 921–930

  6. Stoianovici D (2005) Multi-imager compatible actuation principles in surgical robotics. Int J Med Robot Comput 1(2):86–100

    Article  Google Scholar 

  7. Hu F, Li D (2012) Modelling and simulation of milling forces using an arbitrary Lagrangian–Eulerian finite element method and support vector regression. J Optim Theory Appl 153(2):461–484

    Article  MATH  MathSciNet  Google Scholar 

  8. Mounayri HEI, Badar MA, Rengifo GA (2008) Multi-parameter ANN model for flat-end milling. Trans Can Soc Mech Eng 32(3–4):523–536

    Google Scholar 

  9. Gonzalo O, Jauregi H, Uriarte LG, Lacalle LN (2009) Prediction of specific force coefficients from a FEM cutting model. Int J Adv Manuf Technol 43(3–4):348–356

    Article  Google Scholar 

  10. Özel T, Altan T (2000) Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high speed flat end milling. Int J Mach Tools Manuf 40(5):713–738

    Article  Google Scholar 

  11. Gradisek J, Kalveram M, Weinert K (2004) Mechanistic identification of specific force coefficients for a general end mill. Int J Mach Tools Manuf 44(4):401–414

    Article  Google Scholar 

  12. Lamikiz A, Lacalle LN, Sánchez JA, Salgado MA (2004) Cutting force estimation in sculptured surface milling. Int J Mach Tools Manuf 44(14):1511–1526

    Article  Google Scholar 

  13. Dang JW, Zhang WH, Yang Y, Wan M (2010) Cutting force modeling for flat end milling including bottom edge cutting effect. Int J Adv Manuf Technol 50(11):986–997

    Google Scholar 

  14. Ehmann KF, Kapoor SG, Devor RE, Lazoglu I (1997) Machining process modeling: a review. Trans ASME J Manuf Sci Eng 119(4B):655–663

    Article  Google Scholar 

  15. Oscar G, Jokin B, Haritz J (2010) A method for the identification of the specific force coefficients for mechanistic milling simulation. Int J Mach Tools Manuf 50(9):765–774

    Article  Google Scholar 

  16. Roth D, Ismail F, Bedi S (2005) Mechanistic modelling of the milling process using complex tool geometry. Int J Adv Manuf Technol 25(1–2):140–144

    Article  Google Scholar 

  17. Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters. Part I: helical end mills. Int J Mach Tools Manuf 41(15):2195–2212

    Article  Google Scholar 

  18. Rivière-Lorphèvre E, Filippi E (2009) Mechanistic cutting force model parameters evaluation in milling taking cutter radial runout into account. Int J Adv Manuf Technol 45(1–2):8–15

    Article  Google Scholar 

  19. Kumar A, Choi SK, Goksel L (2011) Tolerance allocation of assemblies using fuzzy comprehensive evaluation and decision support process. Int J Adv Manuf Technol 55(1–4):379–391

    Article  Google Scholar 

  20. Leon T, Liern V, Ruiz JL, Sirvent I (2003) A fuzzy mathematical programming approach to the assessment of efficiency with DEA models. Fuzzy Sets Syst 139(2):407–419

    Article  MATH  MathSciNet  Google Scholar 

  21. Rao RV, Gandhi OP (2002) Digraph and matrix methods for the machinability evaluation of work materials. Int J Mach Tools Manuf 42(3):321–330

    Article  MathSciNet  Google Scholar 

  22. Jangra K, Grover S, Chan FTS, Aggarwal A (2011) Digraph and matrix method to evaluate the machinability of tungsten carbide composite with wire EDM. Int J Adv Manuf Technol 56(9–12):959–974

    Article  Google Scholar 

  23. Lee B, Tarng Y, Li H (2000) An investigation of modeling of the machining database in turning operations. J Mater Process Technol 105(1–2):1–6

    Article  Google Scholar 

  24. Li X, Hong W, Wang J, Song J, Kang J (2006) Research on the radar chart theory applied to the indoor environmental comfort level evaluation. In Proc. of WCICA 2006 Conf. Dalian, China, 2006: 5214–5217

  25. Altintas Y (2000) Manufacturing automation. Cambridge University Press, Cambridge

    Google Scholar 

  26. Cifuentes ED, Garcia HP, Villasenor MG (2010) Dynamic analysis of runout correction in milling. Int J Mach Tools Manuf 50(8):709–717

    Article  Google Scholar 

  27. Seethaler RJ, Yellowley I (1999) The identification of radial runout in milling operations. Trans ASME J Manuf Sci Eng 121(3):524–531

    Article  Google Scholar 

  28. Karpat Y, Bahtiyar O, Deger B (2012) Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. Int J Mach Tools Manuf 56:79–93

    Article  Google Scholar 

  29. Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. Trans ASME J Manuf Sci Eng 118(2):216–224

    Article  Google Scholar 

  30. Irene BJ, Joan VC, Hernan GR (2011) Influence of feed, eccentricity and helix angle on topography obtained in side milling processes. Int J Mach Tools Manuf 51(12):889–897

    Article  Google Scholar 

  31. Jurkat WB, Ryser HJ (1966) Matrix factorization of determinants and permanents. J Algebra 3:1–27

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Ren, Z. & Wu, Z. Mechanistic force modeling and machinability evaluation on MR-compatible materials. Int J Adv Manuf Technol 74, 151–161 (2014). https://doi.org/10.1007/s00170-014-5980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5980-7

Keywords

Navigation