Study of variable depth air pockets on air spindle vibrations in ultra-precision machine tools

  • M. AkhondzadehEmail author
  • M. Vahdati


The low vibration of air spindle is a very important thing to achieve nanometer accuracies in the products of machined parts in nano-machining. Compared to the common air pockets with constant depth used in air cells of ultra-precision machines, this paper studied some special air pockets including five variable depth modes: flat, conical, pyramidical, spherical with two sphere radii. Considering rotational speed as well as these parameters, 18 experiments have been committed using a lathe machine. From experiment results, the air spindle with air pockets of pyramidical depth at a low rotational speed has minimum vibrations.


Ultra-precision machining Air spindle Variable depth Air pocket Vibrations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weck M, Koch A (1993) Spindle-bearing systems for high-speed applications in machine tools. Ann CIRP 42:445–448CrossRefGoogle Scholar
  2. 2.
    Venkatesh V. C. (2007) Sudin Izman; “Precision Engineering”; Tata McGraw-Hill Publishing Company LimitedGoogle Scholar
  3. 3.
    Luo X (2005) Design of ultra precision machine tools with applications to manufacture of miniature and micro component. J Mater Process Technol 167:515–528CrossRefGoogle Scholar
  4. 4.
    Boffey DA, Barrow AA, Deardent JK (1985) Experimental investigation into the performance of an aerostatic industrial thrust bearing. Tribol Int 18(3):165–168CrossRefGoogle Scholar
  5. 5.
    Stout KJ, Barrans SM (2000) The design of aerostatic bearings for application to nanometer resolution manufacturing machine systems. Tribol Int 33:803–809CrossRefGoogle Scholar
  6. 6.
    Chen MF, Lin YT (2002) Static behavior and dynamic stability analysis of grooved rectangular aerostatic thrust bearings by modified resistance network method. Tribol Int 35:329–338CrossRefGoogle Scholar
  7. 7.
    Chen MF, Chen YP, Lin CD (2002) Research on the arc type aerostatic bearing for a PCB drilling station. Tribol Int 35:235–243CrossRefGoogle Scholar
  8. 8.
    Chen CH, Yang DW, Kang Y, Hwang RM, Shyr SS (2009) Influence of orifices on stability of rotor-aerostatic bearing system. Tribol Int 42:1206–1219CrossRefGoogle Scholar
  9. 9.
    Kuang-Chao F, Chi-Chung H, Jong-I M, Jong-I M (2002) Development of a multiple-microhole aerostatic air bearing system. J Micromech Microeng 12:636–643CrossRefGoogle Scholar
  10. 10.
    Shoji N, Kazuo M (2003) An evaluation method of radial accuracy for hydrostatic air spindles considering radial movement of the rotating center. Precis Eng 27:395–400CrossRefGoogle Scholar
  11. 11.
    Jung-Koo P, Kyung-Woong K (2004) Stability analyses and experiments of spindle system using new type of slot-restricted gas journal bearings. Tribol Int 37:451–462CrossRefGoogle Scholar
  12. 12.
    Tomoko H, Naomi Y, Shingo S, Noriaki H, Takashi M, Hiroshi Y (2009) Optimization of groove dimensions in herringbone-grooved journal bearings for improved repeatable run-out characteristics. Tribol Int 42:675–681CrossRefGoogle Scholar
  13. 13.
    Cheng-Hsien C, Ding-Wen Y, Yuan K, Ren-Ming H, Shyh-Shyong S (2009) Influence of orifices on stability of rotor-aerostatic bearing system. Tribol Int 42:1206–1219CrossRefGoogle Scholar
  14. 14.
    Chen MF, Huang WL, Chen YP (2010) Design of the aerostatic linear guideway with a passive disk-spring compensator for PCB drilling machine”. Tribol Int 43:395–403CrossRefGoogle Scholar
  15. 15.
    Chen X, Chen H, Luo X, Ye Y, Hu Y, Xu J (2011) Air vortices and nano-vibration of aerostatic bearings. Tribol Lett 42(2):179–183CrossRefGoogle Scholar
  16. 16.
    Akhondzadeh M, Vahdati M (2013) Experimental investigation on effect of number and size of rectangular air pockets on air spindle vibrations in nanomachining. Proc IMechE Part B: J Eng Manuf 227(2):281–285CrossRefGoogle Scholar
  17. 17.
    Akhondzadeh M, Vahdati M (2013) An experiment on the shape and depth of air pocket on air spindle vibrations in ultra precision machine tools. Proc IMechE Part B: J Eng Manuf 227(4):616–620CrossRefGoogle Scholar
  18. 18.
    Akhondzadeh M, Vahdati M (2014) Air pocket effects on air spindle vibrations in nanomachining”. Proc IMechE Part B: J Eng Manuf 228(3):328–336CrossRefGoogle Scholar
  19. 19.
    Cheng-Hsien H, Tsai T-H, Yang D-W, Kang Y, Chen J-H (2010) The comparison in stability of rotor-aerostatic bearing system compensated by orifices and inherences”. Tribol Int 43:1360–1373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Engineering DepartmentIslamic Azad UniversityKhuzestanIran
  2. 2.Mechanical Engineering DepartmentK. N. Toosi University of TechnologyTehranIran

Personalised recommendations