Skip to main content
Log in

Dissimilar metal laser spot joining of steel to aluminium in conduction mode

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Dissimilar joining of thin (∼1 mm) 6111-T4 aluminium alloy and DC04 uncoated low carbon steel used in automobile structures was carried out using laser spot joining in conduction mode. Two sets of experiments were carried out, using copper and aluminium backing bars, respectively. The welds were produced in overlap configuration with steel on the top. The steel surface was irradiated by the laser, and the heat was conducted through the steel into the aluminium. Temperature at the interface was controlled using the fundamental laser energy parameters so that aluminium melts and wets the steel surface. Reaction between the two metallic alloys resulted in the formation of intermetallic compounds (IMC). The formation pattern of IMC was dependent on the temperature profile and the distribution across the interface and was thicker in the centre of the weld and thinner near the edges. The stoichiometry of the IMC formed was varied across the layer and was principally composed of two different layers of Fe2Al5 and FeAl3. Micro hardness tests were carried out to characterise the IMC layer. Mechanical shear tensile tests showed a maximum joint shear strength of up to 68 % of the shear strength of the aluminium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Government (2009) The UK Low Carbon Five point plan. 220

  2. Okamoto H (2010) Desk Handbook: Phase Diagrams for Binary Alloys. 855

  3. Acarer M, Demir B (2008) An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel. Mater Lett 62:4158–4160. doi:10.1016/j.matlet.2008.05.060

    Article  Google Scholar 

  4. Lee K-J, Kumai S, Arai T, Aizawa T (2007) Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding. Mater Sci Eng A 471:95–101. doi:10.1016/j.msea.2007.04.033

    Article  Google Scholar 

  5. Tanaka T, Morishige T, Hirata T (2009) Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scr Mater 61:756–759. doi:10.1016/j.scriptamat.2009.06.022

    Article  Google Scholar 

  6. Uzun H, Dalle Donne C, Argagnotto A et al (2005) Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Mater Des 26:41–46. doi:10.1016/j.matdes.2004.04.002

    Article  Google Scholar 

  7. Song JL, Lin SB, Yang CL, Fan CL (2009) Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint. J Alloys Compd 488:217–222. doi:10.1016/j.jallcom.2009.08.084

    Article  Google Scholar 

  8. Lin SB, Song JL, Yang CL, Ma GC (2009) Metallurgical and mechanical investigations of aluminium-steel butt joint made by tungsten inert gas welding–brazing. Sci Technol Weld Join 14:636–639. doi:10.1179/136217109X12464549883493

    Article  Google Scholar 

  9. Jácome LA, Weber S, Leitner A et al (2009) Influence of Filler Composition on the Microstructure and Mechanical Properties of Steel-Aluminum Joints Produced by Metal Arc Joining. Adv Eng Mater 11:350–358. doi:10.1002/adem.200800319

    Article  Google Scholar 

  10. Murakami T, Nakata K, Tong H, Ushio M (2003) Dissimilar Metal Joining of Aluminum to Steel by MIG Arc Brazing Using Flux Cored Wire. ISIJ Int 43:1596–1602. doi:10.2355/isijinternational.43.1596

    Article  Google Scholar 

  11. Sasabe S, Iwase T, Matsumoto T et al (2009) Dissimilar Metal Joining of Aluminum Alloys to Steel in MIG Braze Welding by using the advanced Hot-dip Aluminized Steel Sheet. Q J Japan Weld Soc 27:55s–59s. doi:10.2207/qjjws.27.55s

    Article  Google Scholar 

  12. Mathieu A, Shabadi R, Deschamps A et al (2007) Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Opt Laser Technol 39:652–661. doi:10.1016/j.optlastec.2005.08.014

    Article  Google Scholar 

  13. Laukant H, Wallmann C, Müller M et al (2005) Fluxless laser beam joining of aluminium with zinc coated steel. Sci Technol Weld Join 10:219–226. doi:10.1179/174329305X37051

    Article  Google Scholar 

  14. Yan S, Hong Z, Watanabe T, Jingguo T (2010) CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Opt Lasers Eng 48:732–736. doi:10.1016/j.optlaseng.2010.03.015

    Article  Google Scholar 

  15. Takemoto T, Kimura S, Kawahito Y et al (2009) Fluxless joining of aluminium alloy to steel by laser irradiation method. Weld Int 23:316–322. doi:10.1080/09507110802542643

    Article  Google Scholar 

  16. Oikawa H, Ohmiya S, Yoshimura T, Saitoh T (1999) Resistance spot welding of steel and aluminium sheet using insert metal sheet. Sci Technol Weld Join 4:80–88. doi:10.1179/136217199101537608

    Article  Google Scholar 

  17. Qiu R, Iwamoto C, Satonaka S (2009) The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding. Mater Charact 60:156–159. doi:10.1016/j.matchar.2008.07.005

    Article  Google Scholar 

  18. Qiu R, Satonaka S, Iwamoto C (2009) Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels. Mater Des 30:3686–3689. doi:10.1016/j.matdes.2009.02.012

    Article  Google Scholar 

  19. Liyanage T, Kilbourne J, Gerlich AP, North TH (2009) Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join 14:500–508. doi:10.1179/136217109X456960

    Article  Google Scholar 

  20. Assuncao E, Williams S, Yapp D (2012) Interaction time and beam diameter effects on the conduction mode limit. Opt Lasers Eng 50:823–828. doi:10.1016/j.optlaseng.2012.02.001

    Article  Google Scholar 

  21. Assuncao E, Williams S (2013) Comparison of continuous wave and pulsed wave laser welding effects. Opt Lasers Eng 51:674–680. doi:10.1016/j.optlaseng.2013.01.007

    Article  Google Scholar 

  22. Qiu R, Iwamoto C, Satonaka S (2009) Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover Plate. J Mater Process Technol 209:4186–4193. doi:10.1016/j.jmatprotec.2008.11.003

    Article  Google Scholar 

  23. Kobayashi S, Yakou T (2002) Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater Sci Eng A 338:44–53. doi:10.1016/S0921-5093(02)00053-9

    Article  Google Scholar 

  24. Sepld G, Kreimeyer M (2003) Joining of Dissimilar Materials. SPIE Int Symp High-Power Laser 4831:526–533

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pardal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardal, G., Meco, S., Ganguly, S. et al. Dissimilar metal laser spot joining of steel to aluminium in conduction mode. Int J Adv Manuf Technol 73, 365–373 (2014). https://doi.org/10.1007/s00170-014-5802-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5802-y

Keywords

Navigation