Skip to main content
Log in

Statistical modelling of weld bead geometry in oscillating arc narrow gap all-position GMA welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, the oscillating arc narrow gap all-position gas metal arc (GMA) welding process was developed to improve efficiency and quality in the welding of thick-walled pipes. The statistical models of narrow gap all-position GMA weld bead geometry were developed using response surface methodology (RSM) based on central composite design (CCD). The developed models were checked for their adequacy and significance by ANOVA, and the effects of wire feed rate, travel speed, dwell time, oscillating amplitude and welding position on weld bead dimension were studied. Finally, the optimal welding parameters at welding positions of 0° to 180° were obtained by numerical optimization using RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen KH, Sørensen T, Kristensen J (2005) Gas metal arc welding of butt joint with varying gap width based on neural networks. Sci Technol Weld Join 10(1):32–43. doi:10.1179/174329305X19303

    Article  Google Scholar 

  2. Malin VY (1983) State-of-the-art of narrow gap welding. Weld J 62(Compendex):22–30

    Google Scholar 

  3. Wang JY, Ren YS, Yang F, Guo HB (2007) Novel rotation arc system for narrow gap MAG welding. Sci Technol Weld Join 12(6):505–507. doi:10.1179/174329307x213756

    Article  Google Scholar 

  4. Murakami S, Kitagawa A, Nakajima H, Nagai A, Yonezawa M (1986) A study on horizontal narrow gap welding for heavy plates. Hitachi Zosen Technol Rev 47(1):33–38

    Google Scholar 

  5. Hirakoso K, Kano M, Nomura K (1980) Welding apparatus with shifting magnetic field. U.S Patent 4190760 A, 26 Feb

  6. Guo N, Lin SB, Gao C, Fan CL, Yang CL (2009) Study on elimination of interlayer defects in horizontal joints made by rotating arc narrow gap welding. Sci Technol Weld Join 14(6):584. doi:10.1179/136217109X456942

    Article  Google Scholar 

  7. Min D, Xin-hua T, Feng-gui L, Shun Y (2010) Welding of quenched and tempered steels with high-spin arc narrow gap MAG system. Int J Adv Manuf Technol 55(5–8):527–533. doi:10.1007/s00170-010-3052-1

    Google Scholar 

  8. Wang J, Zhu J, Fu P, Su R, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. Isij Int 52(1):110–114

    Article  Google Scholar 

  9. Xu WH, Lin SB, Fan CL, Yang CL (2012) Feasibility study on tandem narrow gap GMAW of 65 mm thick steel plate. China Weld 21(3):7–11

    Google Scholar 

  10. Lassaline E, Zajaczkowski B, North TH (1989) Narrow groove twin-wire GMAW of high-strength steel. Weld J 68(9):53–58

    Google Scholar 

  11. Manonmani K, Murugan N, Buvanasekaran G (2007) Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int J Adv Manuf Technol 32(11–12):1125–1133. doi:10.1007/s00170-006-0432-7

    Article  Google Scholar 

  12. Kim IS, Basu A, Siores E (1996) Mathematical models for control of weld bead penetration in the GMAW process. Int J Adv Manuf Technol 12(6):393–401. doi:10.1007/BF01186927

    Article  Google Scholar 

  13. Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 88(1):266–275. doi:10.1016/S0924-0136(98)00405-1

    Article  Google Scholar 

  14. Koleva E (2005) Electron beam weld parameters and thermal efficiency improvement. Vacuum 77(4):413–421. doi:10.1016/j.vacuum.2004.09.002

    Article  Google Scholar 

  15. Starling C, Marques PV, Modenesi PJ (1995) Statistical modelling of narrow-gap GTA welding with magnetic arc oscillation. J Mater Process Technol 51(1):37–49. doi:10.1016/0924-0136(94)01356-6

    Article  Google Scholar 

  16. Kim J, Kim I, Lee J, Jung S (2011) An experimental study on the prediction of back-bead geometry in pipeline using the GMA welding process. Int Sci J 49(1):53–61

    Google Scholar 

  17. Badkar DS, Pandey KS, Buvanashekaran G (2012) Application of the central composite design in optimization of laser transformation hardening parameters of commercially pure titanium using Nd:YAG laser. Int J Adv Manuf Technol 59(1–4):169–192. doi:10.1007/s00170-011-3492-2

    Article  Google Scholar 

  18. Ii EJL, Torres GCF, Felizardo I, Filho FAR, Bracarense AQ (2005) Development of a robot for orbital welding. Ind Robot: Int J 32(4):321–325. doi:10.1108/01439910510600182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W.H., Lin, S.B., Fan, C.L. et al. Statistical modelling of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int J Adv Manuf Technol 72, 1705–1716 (2014). https://doi.org/10.1007/s00170-014-5799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5799-2

Keywords

Navigation