A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response


In this paper, a new procedure is developed to monitor a two-stage process with a second stage Poisson quality characteristic. In the proposed method, log and square root link functions are first combined to introduce a new link function that establishes a relationship between the Poisson variable of the second stage and the quality characteristic of the first stage. Then, the standardized residual statistic, which is independent of the quality characteristic in the previous stage and follows approximately standardized normal distribution, is computed based on the proposed link function. Then, Shewhart and exponentially weighted moving average (EWMA) cause-selecting charts are utilized to monitor standardized residuals. Finally, two examples and a case study with a Poisson response variable are investigated, and the performance of the charts is evaluated by using average run length (ARL) criterion in comparison with the best literature method.

This is a preview of subscription content, log in to check access.


  1. 1.

    Wade MR, Woodall WH (1993) A review and analysis of cause-selecting control charts. J Qual Technol 25(3):161–169

    Article  Google Scholar 

  2. 2.

    Mandel BJ (1969) The regression control chart. J Qual Technol 1(1):1–9

    MathSciNet  Article  Google Scholar 

  3. 3.

    Zhang GX (1984) A new type of control charts and theory of diagnosis with control charts. World Quality Congress Transactions. Am Soc Qual Control 3:175–185

    Google Scholar 

  4. 4.

    Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):1–29

    MathSciNet  Article  Google Scholar 

  5. 5.

    Hawkins DM (1991) Multivariate quality control based on regression adjusted variables. Technometrics 33(1):61–75

    Google Scholar 

  6. 6.

    Hawkins DM (1993) Regression adjustment for variables in multivariate quality control. J Qual Technol 25(3):170–182

    Article  Google Scholar 

  7. 7.

    Hauck DJ, Runger GC, Montgomery DC (1999) Multivariate statistical process monitoring and diagnosis with grouped regression-adjusted variables. Commun Stat Simul Comput 28(2):309–328

    MATH  Article  Google Scholar 

  8. 8.

    Amiri A, Zolfaghari S, Asgari A (2012) Identifying the time of a step change in the mean of a two-stage process. Proceedings of the IEEE international conference on industrial engineering and engineering management (IEEM), Hong Kong 10–13

  9. 9.

    Asadzadeh S, Aghaie A (2009) Cause-selecting control charts based on Huber’s M-estimator. Int J Adv Manuf Technol 45(3–4):341–351

    Article  Google Scholar 

  10. 10.

    Asadzadeh S, Aghaie A, Shariari H (2009) Monitoring dependent process steps using robust cause selecting control charts. Qual Reliab Eng Int 25(7):851–874

    Article  Google Scholar 

  11. 11.

    Asadzadeh S, Zerehsaz Y, Saghaei A, Aghaie A (2011) Compound-estimator based cause-selecting control chart for monitoring multistage processes. Commun Stat-Simul Comput 40(3):322–344

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Yang SF, Su HC (2006) Controlling-dependent process steps using variable sample size control charts. Appl Stoch Model Bus Ind 22(5–6):503–517

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Yang SF, Su HC (2007) Adaptive sampling interval cause-selecting control charts. Int J Adv Manuf Technol 31(11):1169–1180

    Article  Google Scholar 

  14. 14.

    Yang SF, Su HC (2007) Adaptive control schemes for two dependent process steps. J Loss Prev Process Ind 20(1):15–25

    Article  Google Scholar 

  15. 15.

    Yang SF, Yang CM (2005) Effects of imprecise measurement on the two dependent processes control for the autocorrelated observations. Int J Adv Manuf Technol 26(5–6):623–630

    Article  Google Scholar 

  16. 16.

    Yang SF, Yang CM (2006) An approach to controlling two dependent process steps with autocorrelated observations. Int J Adv Manuf Technol 29(1–2):170–177

    Article  Google Scholar 

  17. 17.

    Jearkpaporn D, Montgomery DC, Runger GC, Borror CM (2003) Process monitoring for correlated gamma-distributed data using generalized-linear-model-based control charts. Qual Reliab Eng Int 19(6):477–491

    Article  Google Scholar 

  18. 18.

    Skinner KR, Montgomery DC, Runger GC (2003) Process monitoring for multiple count data using generalized linear model-based control charts. Int J Prod Res 41(6):1167–1180

    MATH  Article  Google Scholar 

  19. 19.

    Skinner KR, Montgomery DC, Runger GC (2004) Generalized linear model-based control charts for discrete semiconductor process data. Qual Reliab Eng Int 20(8):777–786

    Article  Google Scholar 

  20. 20.

    Jearkpaporn D, Borror CM, Runger GC, Montgomery DC (2007) Process monitoring for mean shifts for multiple stage processes. Int J Prod Res 45(23):5547–5570

    MATH  Article  Google Scholar 

  21. 21.

    Amiri A, Asgari A, Zerehsaz Y (2012) Developing a cause selecting control chart for monitoring two-stage processes with Poisson quality characteristic. Int J Ind Eng Prod Manag 24(2):191–202 (In Farsi)

    Google Scholar 

  22. 22.

    Amiri A, Asgari A, Doroudyan MH (2012) Monitoring two stages processes with gamma output using generalized linear models and NORTA inverse method. J Qual Eng Manag 2(1):55–61 (In Farsi)

    Google Scholar 

  23. 23.

    Aghaie A, Samimi Y, Asadzadeh S (2010) Monitoring and diagnosing a two-stage production process with attribute characteristics. Iran J Oper Res 2(1):1–16

    Google Scholar 

  24. 24.

    Yang SF, Yeh JT (2011) Using cause selecting control charts to monitor dependent process stages with attributes data. Expert Syst Appl 38(1):667–672

    Article  Google Scholar 

  25. 25.

    Shang Y, Tsung F, Zou C (2013) Statistical process control for multistage processes with binary outputs statistical process control for multistage processes with binary outputs. IIE Trans 45(9):1008–1023

    Article  Google Scholar 

  26. 26.

    Asadzadeh S, Aghaie A (2012) Improving the product reliability in multistage manufacturing and service operations. Qual Reliab Eng Int 28(4):397–407

    Article  Google Scholar 

  27. 27.

    Asadzadeh S, Aghaie A, Shahriari H (2014) Using frailty models to account for heterogeneity in multistage manufacturing and service processes. Qual and Quant 48(2):593–604

    Article  Google Scholar 

  28. 28.

    Asadzadeh S, Aghaie A, Niaki STA (2013) AFT regression-adjusted monitoring of reliability data in cascade processes. Qual and Quant 47(6):3349–3362

    Article  Google Scholar 

  29. 29.

    Asadzadeh S, Aghaie A, Shahriari H (2013) Cause-selecting charts based on proportional hazards and binary frailty models. Int J Ind Eng Prod Res 24(2):107–112

    Google Scholar 

  30. 30.

    Asadzadeh S, Aghaie A, Niaki STA (2013) Monitoring autocorrelated reliability data in multistage processes. Proceedings of the international industrial engineering conference, Tehran, Iran

  31. 31.

    Ghahyazi ME, Niaki STA, Soleimani P (2013) On the monitoring of linear profiles in multistage processes. Published Online Qual Reliab Eng Int. doi:10.1002/qre.1531

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amirhossein Amiri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asgari, A., Amiri, A. & Niaki, S.T.A. A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response. Int J Adv Manuf Technol 72, 1243–1256 (2014). https://doi.org/10.1007/s00170-014-5692-z

Download citation


  • Two-stage processes
  • Generalized linear models (GLM)
  • Poisson response variable
  • Cause-selecting control chart (CSC)
  • Log square root link function
  • Average run length (ARL)
  • Standardized residual (SR)