Skip to main content

Advertisement

Log in

Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Managing macro- and micro-geometry of surfaces during manufacturing processes is a key factor for their following uses. Indeed, micro-geometry and surface topography are directly linked to the performances of functions (contact, friction, lubrication, etc.) by texture parameters to ensure the desired local geometry. Common models for simulation of surface topography are based on ideal geometry of the machining tool and cannot represent surface defects. The actual prediction and simulation of defects are one step forward in a competitive context. In this paper, the realistic model proposed aims to simulate and predict as finely as possible local defects of machined surfaces taking into account the actual edge geometry of the cutting tool. The combined use of the machining kinematics and of the measured geometry of the cutting edges leads to the representation of the geometrical envelope of the surface using a Zbuffer technique. Simulation assessment is carried out by the analysis of 3D surface topography parameters such as surface complexity and relative area and by a comparison of simulation results to an experimental case of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 2009 ASME B46.1: Surface texture (surface roughness, waviness, and lay). Revision of ASME B46: 1-2002

  2. 2012 ISO 25178-2: Geometrical product specifications (GPS)—surface texture: areal—Part 2: terms, definitions and surface texture parameters. ICS : 17.040.20

  3. 2013 SFrax: surface metrology and fractal analysis. http://www.surfract.com/

  4. Antoniadis A, Savakis C, Bilalis N, Balouktsis A (2003) Prediction of surface topomorphy and roughness in ball-end milling. Int J Adv Manuf Technol 21(12):965–971. doi:10.1007/s00170-002-1418-8

    Article  Google Scholar 

  5. Arizmendi M, Fernández J, de Lacalle LL, Lamikiz A, Gil A, Sánchez J, Campa F, Veiga F (2008) Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. experimental validation. CIRP Ann Manuf Technol 57(1):101–104. doi:10.1016/j.cirp.2008.03.045

    Article  Google Scholar 

  6. Aurich J, Braun O, Warnecke G, Cronjäger L (2003) Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation. CIRP Ann Manuf Technol 52(1):275–280. doi:10.1016/S0007-8506(07)60583-6

    Article  Google Scholar 

  7. Berglund J, Brown C, Rosén BG, Bay N (2010) Milled die steel surface roughness correlation with steel sheet friction. CIRP Ann Manuf Technol 59(1):577–580. doi:10.1016/j.cirp.2010.03.140

    Article  Google Scholar 

  8. Bouzakis K D, Aichouh P, Efstathiou K (2003) Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int J Mach Tools Manuf 43(5):499–514. doi:10.1016/S0890-6955(02)00265-1

    Article  Google Scholar 

  9. Buj-Corral I, Vivancos-Calvet J (2012) Domínguez-Fernández A. Int J Mach Tools Manuf 53(1):151–159. doi:10.1016/j.ijmachtools.2011.10.006

    Article  Google Scholar 

  10. Denkena B, Böß V, Nespor D, Samp A (2011) Kinematic and stochastic surface topography of machined TiAl6V4-parts by means of ball nose end milling. Procedia Eng 19(0):81–87. doi:10.1016/j.proeng.2011.11.083. 1st CIRP Conference on Surface Integrity (CSI)

    Article  Google Scholar 

  11. Gao T, Zhang W, Qiu K, Wan M (2005) A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling. J Manuf Sci Eng 128(1):96–103. doi:10.1115/1.2123047

    Article  Google Scholar 

  12. Guillemot N, Lartigue C, Billardon R, Mawussi B (2010) Prediction of the endurance limit taking account of the microgeometry after finishing milling. Int J Interact Des Manuf 4(4):239–249. doi:10.1007/s12008-010-0104-6

    Article  Google Scholar 

  13. Inasaki I (1996) Grinding process simulation based on the wheel topography measurement. CIRP Ann Manuf Technol 45(1):347–350. doi:10.1016/S0007-8506(07)63077-7

    Article  Google Scholar 

  14. Kim B, Chu C (1999) Texture prediction of milled surfaces using texture superposition method. Comput Aided Des 31(8):485–494. doi:10.1016/S0010-4485(99)00045-7

    Article  MATH  Google Scholar 

  15. Lavernhe S, Tournier C, Lartigue C (2008) Kinematical performance prediction in multi-axis machining for process planning optimization. Int J Adv Manuf Technol 37(5-6):534–544. doi:10.1007/s00170-007-1001-4

    Article  Google Scholar 

  16. Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling. Int J Adv Manuf Technol 51(9-12):915–924. doi:10.1007/s00170-010-2686-3

    Article  Google Scholar 

  17. Liu N, Loftus M, Whitten A (2005) Surface finish visualisation in high speed, ball nose milling applications. Int J Mach Tools Manuf 45(10):1152–1161. doi:10.1016/j.ijmachtools.2004.12.007

    Article  Google Scholar 

  18. Novovic D, Dewes R, Aspinwall D, Voice W, Bowen P (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44 (2 - 3):125–134. doi:10.1016/j.ijmachtools.2003.10.018

    Article  Google Scholar 

  19. Quinsat Y, Sabourin L, Lartigue C (2008) Surface topography in ball end milling process: Description of a 3D surface roughness parameter. J Mater Process Technol 195(1 - 3):135–143. doi:10.1016/j.jmatprotec.2007.04.129

    Article  Google Scholar 

  20. Quinsat Y, Lavernhe S, Lartigue C (2011) Characterization of 3D surface topography in 5-axis milling. Wear 271(3 - 4):590–595. doi:10.1016/j.wear.2010.05.014. the 12th International Conference on Metrology and Properties of Engineering Surfaces

    Article  Google Scholar 

  21. Souto-Lebel A, Guillemot N, Lartigue C, Billardon R (2011) Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life. Procedia Eng 19:343–348. doi:10.1016/j.proeng.2011.11.123. 1st CIRP Conference on Surface Integrity (CSI)

    Article  Google Scholar 

  22. Ungar P S, Brown C A, Bergstrom T S, Walker A (2003) Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scan 25(4):185–193. doi:10.1002/sca.4950250405

    Article  Google Scholar 

  23. Zhang W H, Tan G, Wan M, Gao T, Bassir D (2008) A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling. J Manuf Sci Eng 003:1–11. doi:10.1115/1.2815337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Lavernhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavernhe, S., Quinsat, Y., Lartigue, C. et al. Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool. Int J Adv Manuf Technol 74, 393–401 (2014). https://doi.org/10.1007/s00170-014-5689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5689-7

Keywords

Navigation